hdu 5244 inverse (上海大都会赛) (分治算法)

本文介绍了一种基于位运算和特定函数f的加密方法,并通过分治策略实现逆向解析,以恢复原始数组。该方法利用了特殊的数学性质,使得逆向过程变得可行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

nverse

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 110    Accepted Submission(s): 44


Problem Description
Mike has got a huge array b, and he is told that the array is encrypted.

The array is encrypted as follows.

Let ai(0i<n) be the i-th number of this original array.

Let bi(0i<n) be the i-th number of this encrypted array.

Let n be a power of 2, which means n=2k.

The bi is calculated as following.

bi=0j<nf((i or j) xor i)aj


f(x) means, if the number of 1 in the binary of x is even, it will return 1, otherwise 0.

Mike want to inverse the procedure of encryption.

Please help him recover the array a with the array b.
 

Input
The first line contains an integer T(T5), denoting the number of the test cases.

For each test case, the first line contains an integer k(0k20),
The next line contains n=2k integers, which are bi respectively.

It is guaranteed that, ai is an integer and 0ai109.
 

Output
For each test case, output ''Case #t:'' to represent this is the t-th case. And then output the array a.
 

Sample Input
2 0 233 2 5 3 4 10
 

Sample Output
Case #1: 233 Case #2: 1 2 3 4
    

    分治。吧矩阵构造出来们发现有规律 ,然后就可以用分治求解了。

#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
const int mmax = (1<<21);
const int inf = 0x3fffffff;
typedef __int64 LL;
LL b[mmax],a[mmax];
void cdq(int l,int r)
{
    if(l==r)
    {
        a[l]=b[l];
        return ;
    }
    int mid=(l+r)>>1;
    for(int i=l;i<=mid;i++)
    {
        LL tmp=b[i]+b[i+(r-l+1)/2];
        b[i]=(tmp-(b[r]-b[mid]))/2;
        b[i+(r-l+1)/2]-=b[i];
    }
    cdq(l,mid);
    cdq(mid+1,r);
}
int get(int x)
{
    int cnt=0;
    while(x)
    {
        if(x&1)
            cnt++;
        x/=2;
    }
    return cnt;
}
int c[mmax];
void test(int k)
{
    for(int i=0;i<(1<<k);i++)
    {
        int sum=0;
        for(int j=0;j<(1<<k);j++)
            if( get((i|j)^i ) %2==0 )
                sum+=a[j+1];
        b[i+1]=sum;
    }
}
int main()
{
    int t,k,ca=0;
    cin>>t;
    while(t--)
    {
        scanf("%d",&k);
        for(int i=1;i<=(1<<k);i++)
            scanf("%I64d",&b[i]);
//        for(int i=1;i<=(1<<k);i++)
//            scanf("%d",&a[i]);
//        test(k);
        cdq(1,(1<<k));
        printf("Case #%d: ",++ca);
        for(int i=1;i<=(1<<k);i++)
            printf("%I64d%c",a[i],i==(1<<k)?'\n':' ');
        //test(k);
    }
    return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值