其中#导入numpy工具包,并且更名为npimport numpy as np#导入pandas工具包,并且更名为pdimport pandas as pd#导入matplotlib工具包中的pyplot,并且更名为pltimport matplotlib.pyplot as plt#导入sklearn工具包中的逻辑回归分类器from sklearn.linear_model import LogisticRegression#读取训练数据集(在UCI中可以找到)df_train = pd.read_csv('breast-cancer-train.csv')#读取测试数据集df_test = pd.read_csv('breast-cancer-test.csv')
'''该数据总共有4列,除了编号之外,包含Clump Thickness,Cell Size,Type三个特征,其中前两个特征是数值型的,最后一项是布尔型,分别代表肿瘤患者的良性与恶性'''
#选取'Clump Thickness'与'Cell Size'作为特征(属性),构建测试集中的正负分类(恶性肿瘤,良性肿瘤)样本。#恶性肿瘤用0表示;良性肿瘤用1表示。df_test_negative = df_test.loc[df_test['Type'] == 0][['Clump Thickness','Cell Size']]df_test_positive = df_test.loc[df_test['Type'] == 1][['Clump Thickness','Cell Size']]
#绘制良性肿瘤样本点,标记为红色的oplt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'],marker='o',s=200,c='red')#绘制恶性肿瘤样本点,标记为黑色的xplt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'],marker='x',s=150,c='black')
#绘制x,y轴说明plt.xlabel('Clump Thickness')plt.ylabel('Cell Size')plt.show()
#利用numpy中的random函数随机采样直线的截距和系数。intercept = np.random.random([1])coef = np.random.random([2])lx = np.arange(0,12)ly = (-intercept-lx * coef[0]) / coef[1]#绘制一条随机直线plt.plot(lx,ly,c='yellow')
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'],marker='o',s=200,c='red')plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'],marker='x',s=150,c='black')
plt.xlabel('Clump Thickness')plt.ylabel('Cell Size')plt.show()
#引入LR分类器lr = LogisticRegression()#使用前10条训练样本学习直线的系数和截距lr.fit(df_train[['Clump Thickness','Cell Size']][:10],df_train['Type'][:10])print("Testing accuracy(10 training samples):",lr.score(df_test[['Clump Thickness','Cell Size']],df_test['Type']))
intercept = lr.intercept_coef = lr.coef_[0,:]ly = (-intercept - lx * coef[0]) / coef[1]
plt.plot(lx,ly,c='green')
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'],marker='o',s=200,c='red')plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'],marker='x',s=150,c='black')
plt.xlabel('Clump Thickness')plt.ylabel('Cell Size')plt.show()
#使用所有训练样本学习直线的系数和截距lr.fit(df_train[['Clump Thickness','Cell Size']],df_train['Type'])print("Testing accuracy(all training samples):",lr.score(df_test[['Clump Thickness','Cell Size']],df_test['Type']))intercept=lr.intercept_coef=lr.coef_[0,:]ly=(-intercept -lx*coef[0])/coef[1]plt.plot(lx,ly,c='blue')
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'],marker='o',s=200,c='red')plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'],marker='x',s=150,c='black')
plt.xlabel('Clump Thickness')plt.ylabel('Cell Size')plt.show()
其中
#导入numpy工具包,并且更名为np
import numpy as np
#导入pandas工具包,并且更名为pd
import pandas as pd
#导入matplotlib工具包中的pyplot,并且更名为plt
import matplotlib.pyplot as plt
#导入sklearn工具包中的逻辑回归分类器
from sklearn.linear_model import LogisticRegression
#读取训练数据集(在UCI中可以找到)
df_train = pd.read_csv('breast-cancer-train.csv')
#读取测试数据集
df_test = pd.read_csv('breast-cancer-test.csv')
'''该数据总共有4列,除了编号之外,
包含Clump Thickness,Cell Size,Type三个特征,
其中前两个特征是数值型的,最后一项是布尔型,分别代表肿瘤患者的良性与恶性
'''
#选取'Clump Thickness'与'Cell Size'作为特征(属性),构建测试集中的正负分类(恶性肿瘤,良性肿瘤)样本。
#恶性肿瘤用0表示;良性肿瘤用1表示。
df_test_negative = df_test.loc[df_test['Type'] == 0][['Clump Thickness','Cell Size']]
df_test_positive = df_test.loc[df_test['Type'] == 1][['Clump Thickness','Cell Size']]
#绘制良性肿瘤样本点,标记为红色的o
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'],marker='o',s=200,c='red')
#绘制恶性肿瘤样本点,标记为黑色的x
plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'],marker='x',s=150,c='black')
#绘制x,y轴说明
plt.xlabel('Clump Thickness')
plt.ylabel('Cell Size')
plt.show()
#利用numpy中的random函数随机采样直线的截距和系数。
intercept = np.random.random([1])
coef = np.random.random([2])
lx = np.arange(0,12)
ly = (-intercept-lx * coef[0]) / coef[1]
#绘制一条随机直线
plt.plot(lx,ly,c='yellow')
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'],marker='o',s=200,c='red')
plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'],marker='x',s=150,c='black')
plt.xlabel('Clump Thickness')
plt.ylabel('Cell Size')
plt.show()
#引入LR分类器
lr = LogisticRegression()
#使用前10条训练样本学习直线的系数和截距
lr.fit(df_train[['Clump Thickness','Cell Size']][:10],df_train['Type'][:10])
print("Testing accuracy(10 training samples):",lr.score(df_test[['Clump Thickness','Cell Size']],df_test['Type']))
intercept = lr.intercept_
coef = lr.coef_[0,:]
ly = (-intercept - lx * coef[0]) / coef[1]
plt.plot(lx,ly,c='green')
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'],marker='o',s=200,c='red')
plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'],marker='x',s=150,c='black')
plt.xlabel('Clump Thickness')
plt.ylabel('Cell Size')
plt.show()
#使用所有训练样本学习直线的系数和截距
lr.fit(df_train[['Clump Thickness','Cell Size']],df_train['Type'])
print("Testing accuracy(all training samples):",lr.score(df_test[['Clump Thickness','Cell Size']],df_test['Type']))
intercept=lr.intercept_
coef=lr.coef_[0,:]
ly=(-intercept -lx*coef[0])/coef[1]
plt.plot(lx,ly,c='blue')
plt.scatter(df_test_negative['Clump Thickness'],df_test_negative['Cell Size'],marker='o',s=200,c='red')
plt.scatter(df_test_positive['Clump Thickness'],df_test_positive['Cell Size'],marker='x',s=150,c='black')
plt.xlabel('Clump Thickness')
plt.ylabel('Cell Size')
plt.show()