setting up your robot with tf(二)

本文介绍了如何使用robot_state_publisher简化机器人状态发布流程,并通过一个R2D2机器人实例展示了如何配置URDF文件、创建状态发布节点以及设置launch文件。通过state_publisher节点发布关节状态信息,配合robot_state_publisher节点构建完整的TF树。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1,using the robot state publisher on your own robot

上面一节是使用TF树结构来表示不同的框架之间的关系,且这棵TF转换树是一棵单遍历的树,表示了不同框架之间的关系,我们写了一个节点,用来定义两个框架的关系,这样下次使用就能自动调用这种关系,这样tf就帮我们做了很重要的一份工作。这一节我们学习robot state publisher。当我们的机器人有很多个相关连的框架时,这样把它们所有的相关框架信息发布给tf即形成一棵tf结构树就变得十分麻烦,而robot state publisher就为你做了这份工作即TF树帮助你避免每次都要调用计算框架之间的关系,只要定义一次就能自动调用使用,而robot state publisher却能帮我们将复杂的框架信息发布给TF即做一棵TF树,这样就能自动调用了微笑(太棒了)

robot state publisher帮你发布状态消息给tf转换库。它内部有一个机器人运动模型,这样当给定机器人的节点位置时,robot state publisher能计算和发布这个机器人的每个连杆的3D位置。使用robot state publisher可以通过一个节点或者通过一个库。

使用robot state publisher最简单的一种方法是将它当作一个节点,对普通的用户来说,这是推荐的方法,运行它需要两样东西:第一个是一个urdf文件用来描述机器人,第二个是一个source文件用来发布节点位置信息作为一个sensor_msgs/JointState.

如何为robot_state_publisher来配置参数和主题呢?

订阅joint_states主题,设置tf前缀为命名空间用来发布转换消息,设置发布频率(默认为50Hz)

当建立好一个urdf机器人描述文件,且建立了一个节点位置信息的source文件,再创建一个简单的.launch文件即可。

这样就将位置信息通过robot state publisher(包含在source文件中)发布给了tf,tf形成了一棵tf结构树,如果用rviz就可调用tf来查看所生成的tf树,即robot state publisher通过计算节点关节信息来生成相应的tf结构转换树,解决了复杂的结构不用像上节tf_broadcaster一个个来发布框架相应关系,可以直接运行一个类似robot state publisher的节点来使用它,生成一棵tf转换树,对于以后的使用能自动调用转换。

2,using urdf with robot_state_publisher

2.1, create the URDF file即一个R2D2简单机器人的URDF描述文件

2.2Publishing the state为了指定机器人的状态,我们必须指定三个节点关节和总里程,先创建一个节点名称是state_publisher

注意创建source文件后要在CmakeLists.txt文件里添加可执行文件名称state_publisher,再用catkin_make进行编译,生成一个可执行文件。还要注意依赖包,应该包括tf,geometry_msgs ,roscpp,否则会出现错误,transformBroadcaster()会找不到(吐舌头)。

2.3创建一个launch文件,这个文件调用了两个节点robot_state_publisher和state_publisher(刚才我们所建立的节点)

2.4运行launch文件,然后打开rviz,调用机器人模型及TF后能看到结果:机器人绕着一个odom坐标运动,机器人上有TF框架显示。

3,分析source文件:

state_publisher.cpp:

   1 #include <string>
   2 #include <ros/ros.h>
   3 #include <sensor_msgs/JointState.h>
   4 #include <tf/transform_broadcaster.h>
//这里要用到转换发布对象TransformBroadcaster,所以要添加头文件
   5 
   6 int main(int argc, char** argv) {
   7     ros::init(argc, argv, "state_publisher");
//初始化ROS命名节点为state_publisher
 8     ros::NodeHandle n;
//NodeHandle是与ROS交流最主要的接入点
 9     ros::Publisher joint_pub = n.advertise<sensor_msgs::JointState>("joint_states", 1);
//ROS发布消息给主题joint_states,消息类型为sensor_msgs::JointState
 10     tf::TransformBroadcaster broadcaster;
//tf的转换对象
 11     ros::Rate loop_rate(30);
  12 
  13     const double degree = M_PI/180;
  14 
  15     // robot state机器人状态
  16     double tilt = 0, tinc = degree, swivel=0, angle=0, height=0, hinc=0.005;
  17 
  18     // message declarations消息声明
  19     geometry_msgs::TransformStamped odom_trans;
  20     sensor_msgs::JointState joint_state;
//定义了两个消息odom_trans和joint_state
 21     odom_trans.header.frame_id = "odom";
  22     odom_trans.child_frame_id = "axis";
//消息odom_trans下的两个frame,父框架为odom,子框架为axis
 23 
  24     while (ros::ok()) {
  25         //update joint_state更新关节点状态
  26         joint_state.header.stamp = ros::Time::now();
  27         joint_state.name.resize(3);
  28         joint_state.position.resize(3);
  29         joint_state.name[0] ="swivel";
  30         joint_state.position[0] = swivel;
  31         joint_state.name[1] ="tilt";
  32         joint_state.position[1] = tilt;
  33         joint_state.name[2] ="periscope";
  34         joint_state.position[2] = height;
  35 
  36 
  37         // update transform更新转换,使绕一个半径为2的圆移动
  38         // (moving in a circle with radius=2)
  39         odom_trans.header.stamp = ros::Time::now();
  40         odom_trans.transform.translation.x = cos(angle)*2;
  41         odom_trans.transform.translation.y = sin(angle)*2;
  42         odom_trans.transform.translation.z = .7;
  43         odom_trans.transform.rotation = tf::createQuaternionMsgFromYaw(angle+M_PI/2);
  44 
  45         //send the joint state and transform发送关节点消息并且发布odom_trans转换消息,发送关节点的消息是state_publisher通过主题joint_state发送
             //给robot_state_publisher的,而odom与axis框架之间的关系是通过节点state_publisher发送的,即节点state_publisher完成了转换树的根部分,而robot_state_publisher
            //则完成了机器人各个框架之间的转换树。注意根树即框架odom与axis之间的关系是一个圆形的关系,故能看到机器人绕着odom坐标做圆形轨迹运动。
 46         joint_pub.publish(joint_state);
  47         broadcaster.sendTransform(odom_trans);
  48 
  49         // Create new robot state
  50         tilt += tinc;
  51         if (tilt<-.5 || tilt>0) tinc *= -1;
  52         height += hinc;
  53         if (height>.2 || height<0) hinc *= -1;
  54         swivel += degree;
  55         angle += degree/4;
  56 
  57         // This will adjust as needed per iteration
  58         loop_rate.sleep();
  59     }
  60 
  61 
  62     return 0;
  63 }
总结:用tf tool查看框架之间的关系,即用 $rosrun tf view_frames来查看, 可以看出新生成的框架odom与机器人的轴框架axis之间的关系是由节点state_publisher发布的,且它们的关系不是简单的线性关系,而是一个圆形的关系,而机器人本身的各个框架之间的对应关系是由robot_state_publisher生成的(是不是自动生成的?疑问),这样就由节点state_publisher和节点robot_state_publisher生成了一棵包括odom框架的完整的tf转换树,注意state_publisher与robot_state_publisher之间的通信也是由一个主题joint_state发布消息形成的,这个可以使用rqt工具来查看。












ros2中晃动imu,但是我的机器人模型不跟着晃动,而且里程计一开,里程计跑走,但是imu和机器人模型还在原地,以下是我的各个文件代码,情分析一下为什么:wheeltec_robot.cpp文件代码为: #include "turn_on_wheeltec_robot/wheeltec_robot.h" #include "turn_on_wheeltec_robot/Quaternion_Solution.h" #include "wheeltec_robot_msg/msg/data.hpp" sensor_msgs::msg::Imu Mpu6050;//Instantiate an IMU object //实例化IMU对象 using std::placeholders::_1; using namespace std; rclcpp::Node::SharedPtr node_handle = nullptr; //自动回充使用相关变量 bool check_AutoCharge_data = false; bool charge_set_state = false; /************************************** Date: January 28, 2021 Function: The main function, ROS initialization, creates the Robot_control object through the Turn_on_robot class and automatically calls the constructor initialization 功能: 主函数,ROS初始化,通过turn_on_robot类创建Robot_control对象并自动调用构造函数初始化 ***************************************/ int main(int argc, char** argv) { rclcpp::init(argc, argv); //ROS initializes and sets the node name //ROS初始化 并设置节点名称 turn_on_robot Robot_Control;//Instantiate an object //实例化一个对象 Robot_Control.Control();//Loop through data collection and publish the topic //循环执行数据采集和发布话题等操作 return 0; } /************************************** Date: January 28, 2021 Function: Data conversion function 功能: 数据转换函数 ***************************************/ short turn_on_robot::IMU_Trans(uint8_t Data_High,uint8_t Data_Low) { short transition_16; transition_16 = 0; transition_16 |= Data_High<<8; transition_16 |= Data_Low; return transition_16; } float turn_on_robot::Odom_Trans(uint8_t Data_High,uint8_t Data_Low) { float data_return; short transition_16; transition_16 = 0; transition_16 |= Data_High<<8; //Get the high 8 bits of data //获取数据的高8位 transition_16 |= Data_Low; //Get the lowest 8 bits of data //获取数据的低8位 data_return = (transition_16 / 1000)+(transition_16 % 1000)*0.001; // The speed unit is changed from mm/s to m/s //速度单位从mm/s转换为m/s return data_return; } /************************************** Date: January 28, 2021 Function: The speed topic subscription Callback function, according to the subscribed instructions through the serial port command control of the lower computer 功能: 速度话题订阅回调函数Callback,根据订阅的指令通过串口发指令控制下位机 ***************************************/ void turn_on_robot::Cmd_Vel_Callback(const geometry_msgs::msg::Twist::SharedPtr twist_aux) { short transition; //intermediate variable //中间变量 Send_Data.tx[0]= 0x06; //frame head 0x7B //帧头0X7B //Send_Data.tx[1] = AutoRecharge; //set aside //预留位 Send_Data.tx[1] = FRAME_HEADER; Send_Data.tx[2] = 0; //set aside //预留位 //The target velocity of the X-axis of the robot //机器人x轴的目标线速度 transition=0; transition = twist_aux->linear.x*1000; //将浮点数放大一千倍,简化传输 (mm/s) Send_Data.tx[4] = transition; //取数据的低8位 Send_Data.tx[3] = transition>>8; //取数据的高8位 //The target velocity of the Y-axis of the robot //机器人y轴的目标线速度 transition=0; transition = twist_aux->linear.y*1000; Send_Data.tx[6] = transition; Send_Data.tx[5] = transition>>8; //The target angular velocity of the robot's Z axis //机器人z轴的目标角速度 transition=0; transition = twist_aux->angular.z*1000; //(1000*rad/s) Send_Data.tx[8] = transition; Send_Data.tx[7] = transition>>8; Send_Data.tx[9]=Check_Sum(9,SEND_DATA_CHECK); //For the BCC check bits, see the Check_Sum function //BCC校验位,规则参见Check_Sum函数 Send_Data.tx[10]=0x0d; //frame tail 0x7D //帧尾0X7D Send_Data.tx[11]=0x0a; try { Stm32_Serial.write(Send_Data.tx,sizeof (Send_Data.tx)); //Sends data to the downloader via serial port //通过串口向下位机发送数据 } catch (serial::IOException& e) { RCLCPP_ERROR(this->get_logger(),("Unable to send data through serial port")); //If sending data fails, an error message is printed //如果发送数据失败,打印错误信息 } } /************************************** Date: January 28, 2021 Function: Publish the IMU data topic 功能: 发布IMU数据话题 ***************************************/ void turn_on_robot::Publish_ImuSensor() { sensor_msgs::msg::Imu Imu_Data_Pub; //Instantiate IMU topic data //实例化IMU话题数据 Imu_Data_Pub.header.stamp = rclcpp::Node::now(); Imu_Data_Pub.header.frame_id = gyro_frame_id; //IMU corresponds to TF coordinates, which is required to use the robot_pose_ekf feature pack //IMU对应TF坐标,使用robot_pose_ekf功能包需要设置此项 Imu_Data_Pub.orientation.x = Mpu6050.orientation.x; //A quaternion represents a three-axis attitude //四元数表达三轴姿态 Imu_Data_Pub.orientation.y = Mpu6050.orientation.y; Imu_Data_Pub.orientation.z = Mpu6050.orientation.z; Imu_Data_Pub.orientation.w = Mpu6050.orientation.w; Imu_Data_Pub.orientation_covariance[0] = 1e6; //Three-axis attitude covariance matrix //三轴姿态协方差矩阵 Imu_Data_Pub.orientation_covariance[4] = 1e6; Imu_Data_Pub.orientation_covariance[8] = 1e-6; Imu_Data_Pub.angular_velocity.x = Mpu6050.angular_velocity.x; //Triaxial angular velocity //三轴角速度 Imu_Data_Pub.angular_velocity.y = Mpu6050.angular_velocity.y; Imu_Data_Pub.angular_velocity.z = Mpu6050.angular_velocity.z; Imu_Data_Pub.angular_velocity_covariance[0] = 1e6; //Triaxial angular velocity covariance matrix //三轴角速度协方差矩阵 Imu_Data_Pub.angular_velocity_covariance[4] = 1e6; Imu_Data_Pub.angular_velocity_covariance[8] = 1e-6; Imu_Data_Pub.linear_acceleration.x = Mpu6050.linear_acceleration.x; //Triaxial acceleration //三轴线性加速度 Imu_Data_Pub.linear_acceleration.y = Mpu6050.linear_acceleration.y; Imu_Data_Pub.linear_acceleration.z = Mpu6050.linear_acceleration.z; imu_publisher->publish(Imu_Data_Pub); //Pub IMU topic //发布IMU话题 } /************************************** Date: January 28, 2021 Function: Publish the odometer topic, Contains position, attitude, triaxial velocity, angular velocity about triaxial, TF parent-child coordinates, and covariance matrix 功能: 发布里程计话题,包含位置、姿态、三轴速度、绕三轴角速度、TF父子坐标、协方差矩阵 ***************************************/ void turn_on_robot::Publish_Odom() { //Convert the Z-axis rotation Angle into a quaternion for expression //把Z轴转角转换为四元数进行表达 tf2::Quaternion q; q.setRPY(0,0,Mpu6050_Data.imu_yaw); geometry_msgs::msg::Quaternion odom_quat=tf2::toMsg(q); nav_msgs::msg::Odometry odom; //Instance the odometer topic data //实例化里程计话题数据 odom.header.stamp = rclcpp::Node::now(); ; odom.header.frame_id = odom_frame_id; // Odometer TF parent coordinates //里程计TF父坐标 odom.pose.pose.position.x = Robot_Pos.X; //Position //位置 odom.pose.pose.position.y = Robot_Pos.Y; //odom.pose.pose.position.z = Robot_Pos.Z; odom.pose.pose.orientation = odom_quat; //Posture, Quaternion converted by Z-axis rotation //姿态,通过Z轴转角转换的四元数 odom.child_frame_id = robot_frame_id; // Odometer TF subcoordinates //里程计TF子坐标 odom.twist.twist.linear.x = Robot_Vel.X; //Speed in the X direction //X方向速度 //odom.twist.twist.linear.y = Robot_Vel.Y; //Speed in the Y direction //Y方向速度 odom.twist.twist.angular.z = Mpu6050.angular_velocity.z; //Angular velocity around the Z axis //绕Z轴角速度 //There are two types of this matrix, which are used when the robot is at rest and when it is moving.Extended Kalman Filtering officially provides 2 matrices for the robot_pose_ekf feature pack //这个矩阵有两种,分别在机器人静止和运动的时候使用。扩展卡尔曼滤波官方提供的2个矩阵,用于robot_pose_ekf功能包 //if(Robot_Vel.X== 0&&Robot_Vel.Y== 0&&Robot_Vel.Z== 0) if(Robot_Vel.X== 0) //If the velocity is zero, it means that the error of the encoder will be relatively small, and the data of the encoder will be considered more reliable //如果velocity是零,说明编码器的误差会比较小,认为编码器数据更可靠 memcpy(&odom.pose.covariance, odom_pose_covariance2, sizeof(odom_pose_covariance2)), memcpy(&odom.twist.covariance, odom_twist_covariance2, sizeof(odom_twist_covariance2)); else //If the velocity of the trolley is non-zero, considering the sliding error that may be brought by the encoder in motion, the data of IMU is considered to be more reliable //如果小车velocity非零,考虑到运动中编码器可能带来的滑动误差,认为imu的数据更可靠 memcpy(&odom.pose.covariance, odom_pose_covariance, sizeof(odom_pose_covariance)), memcpy(&odom.twist.covariance, odom_twist_covariance, sizeof(odom_twist_covariance)); odom_publisher->publish(odom); //Pub odometer topic //发布里程计话题 } /************************************** Date: January 28, 2021 Function: Publish voltage-related information 功能: 发布电压相关信息 ***************************************/ void turn_on_robot::Publish_Voltage() { std_msgs::msg::Float32 voltage_msgs; //Define the data type of the power supply voltage publishing topic //定义电源电压发布话题的数据类型 static float Count_Voltage_Pub=0; if(Count_Voltage_Pub++>10) { Count_Voltage_Pub=0; voltage_msgs.data = Power_voltage; //The power supply voltage is obtained //电源供电的电压获取 voltage_publisher->publish(voltage_msgs); //Post the power supply voltage topic unit: V, volt //发布电源电压话题单位:V、伏特 } } ////////// 回充发布与回调 //////// /************************************** Date: January 17, 2022 Function: Pub the topic whether the robot finds the infrared signal (charging station) 功能: 发布机器人是否寻找到红外信号(充电桩)的话题 ***************************************/ void turn_on_robot::Publish_RED() { std_msgs::msg::UInt8 msg; msg.data=Red; RED_publisher->publish(msg); } /************************************** Date: January 14, 2022 Function: Publish a topic about whether the robot is charging 功能: 发布机器人是否在充电的话题 ***************************************/ void turn_on_robot::Publish_Charging() { static bool last_charging; std_msgs::msg::Bool msg; msg.data=Charging; Charging_publisher->publish(msg); if(last_charging==false && Charging==true)cout<<GREEN<<"Robot is charging."<<endl<<RESET; if(last_charging==true && Charging==false)cout<<RED <<"Robot charging has disconnected."<<endl<<RESET; last_charging=Charging; } /************************************** Date: January 28, 2021 Function: Publish charging current information 功能: 发布充电电流信息 ***************************************/ void turn_on_robot::Publish_ChargingCurrent() { std_msgs::msg::Float32 msg; msg.data=Charging_Current; Charging_current_publisher->publish(msg); } /************************************** Date: March 1, 2022 Function: Infrared connection speed topic subscription Callback function, according to the subscription command through the serial port to set the infrared connection speed 功能: 红外对接速度话题订阅回调函数Callback,根据订阅的指令通过串口发指令设置红外对接速度 ***************************************/ void turn_on_robot::Red_Vel_Callback(const geometry_msgs::msg::Twist::SharedPtr twist_aux) { short transition; //intermediate variable //中间变量 Send_Data.tx[0]=FRAME_HEADER; //frame head 0x7B //帧头0X7B Send_Data.tx[1] = 3; //Infrared docking speed setting flag bit = 3 //红外对接速度设置标志位=3 Send_Data.tx[2] = 0; //set aside //预留位 //The target velocity of the X-axis of the robot //机器人x轴的目标线速度 transition=0; transition = twist_aux->linear.x*1000; //将浮点数放大一千倍,简化传输 Send_Data.tx[4] = transition; //取数据的低8位 Send_Data.tx[3] = transition>>8; //取数据的高8位 //The target velocity of the Y-axis of the robot //机器人y轴的目标线速度 transition=0; transition = twist_aux->linear.y*1000; Send_Data.tx[6] = transition; Send_Data.tx[5] = transition>>8; //The target angular velocity of the robot's Z axis //机器人z轴的目标角速度 transition=0; transition = twist_aux->angular.z*1000; Send_Data.tx[8] = transition; Send_Data.tx[7] = transition>>8; Send_Data.tx[9]=Check_Sum(9,SEND_DATA_CHECK); //BCC check //BCC校验 Send_Data.tx[10]=FRAME_TAIL; //frame tail 0x7D //帧尾0X7D try { Stm32_Serial.write(Send_Data.tx,sizeof (Send_Data.tx)); //Sends data to the downloader via serial port //通过串口向下位机发送数据 } catch (serial::IOException& e) { RCLCPP_ERROR(this->get_logger(),("Unable to send data through serial port")); //If sending data fails, an error message is printed //如果发送数据失败,打印错误信息 } } /************************************** Date: January 14, 2022 Function: Subscription robot recharge flag bit topic, used to tell the lower machine speed command is normal command or recharge command 功能: 订阅机器人是否回充标志位话题,用于告诉下位机速度命令是正常命令还是回充命令 ***************************************/ void turn_on_robot::Recharge_Flag_Callback(const std_msgs::msg::Int8::SharedPtr Recharge_Flag) { AutoRecharge=Recharge_Flag->data; } //服务 void turn_on_robot::Set_Charge_Callback(const shared_ptr<turtlesim::srv::Spawn::Request> req,shared_ptr<turtlesim::srv::Spawn::Response> res) { Send_Data.tx[0]=FRAME_HEADER; //frame head 0x7B //֡ͷ0X7B if(round(req->x)==1) Send_Data.tx[1] = 1; else if(round(req->x)==2) Send_Data.tx[1] = 2; else if(round(req->x)==0) Send_Data.tx[1] = 0,AutoRecharge=0; Send_Data.tx[2] = 0; Send_Data.tx[3] = 0; Send_Data.tx[4] = 0; Send_Data.tx[5] = 0; Send_Data.tx[6] = 0; Send_Data.tx[7] = 0; Send_Data.tx[8] = 0; Send_Data.tx[9]=Check_Sum(9,SEND_DATA_CHECK); //For the BCC check bits, see the Check_Sum function //BCCУ��λ������μ�Check_Sum���� Send_Data.tx[10]=FRAME_TAIL; //frame tail 0x7D //֡β0X7D try { Stm32_Serial.write(Send_Data.tx,sizeof (Send_Data.tx)); //Sends data to the downloader via serial port //ͨ����������λ���������� } catch (serial::IOException& e) { res->name = "false"; } if( Send_Data.tx[1]==0 ) { if(charge_set_state==0) AutoRecharge=0,res->name = "true"; else res->name = "false"; } else { if(charge_set_state==1) res->name = "true"; else res->name = "false"; } return; } ////////// 回充发布与回调 //////// /************************************** Date: January 28, 2021 Function: Serial port communication check function, packet n has a byte, the NTH -1 byte is the check bit, the NTH byte bit frame end.Bit XOR results from byte 1 to byte n-2 are compared with byte n-1, which is a BCC check Input parameter: Count_Number: Check the first few bytes of the packet 功能: 串口通讯校验函数,数据包n有个字节,第n-1个字节为校验位,第n个字节位帧尾。第1个字节到第n-2个字节数据按位异或的结果与第n-1个字节对比,即为BCC校验 输入参数: Count_Number:数据包前几个字节加入校验 mode:对发送数据还是接收数据进行校验 ***************************************/ unsigned char turn_on_robot::Check_Sum(unsigned char Count_Number,unsigned char mode) { unsigned char check_sum=0,k; if(mode==0) //Receive data mode //接收数据模式 { for(k=0;k<Count_Number;k++) { check_sum=check_sum^Receive_Data.rx[k]; //By bit or by bit //按位异或 } } if(mode==1) //Send data mode //发送数据模式 { for(k=1;k<Count_Number;k++) { check_sum=check_sum^Send_Data.tx[k]; //By bit or by bit //按位异或 } } return check_sum; //Returns the bitwise XOR result //返回按位异或结果 } //自动回充专用校验位 unsigned char turn_on_robot::Check_Sum_AutoCharge(unsigned char Count_Number,unsigned char mode) { unsigned char check_sum=0,k; if(mode==0) //Receive data mode //接收数据模式 { for(k=0;k<Count_Number;k++) { check_sum=check_sum^Receive_AutoCharge_Data.rx[k]; //By bit or by bit //按位异或 } } return check_sum; } /************************************** Date: November 18, 2021 Function: Read and verify the data sent by the lower computer frame by frame through the serial port, and then convert the data into international units 功能: 通过串口读取并逐帧校验下位机发送过来的数据,然后数据转换为国际单位 ***************************************/ bool turn_on_robot::Get_Sensor_Data_New() { short transition_16=0; //Intermediate variable //中间变量 //uint8_t i=0; uint8_t check=0,check2=0, error=1,error2=1,Receive_Data_Pr[1]; //Temporary variable to save the data of the lower machine //临时变量,保存下位机数据 static int count,count2; //Static variable for counting //静态变量,用于计数 Stm32_Serial.read(Receive_Data_Pr,sizeof(Receive_Data_Pr)); //Read the data sent by the lower computer through the serial port //通过串口读取下位机发送过来的数据 /*//View the received raw data directly and debug it for use//直接查看接收到的原始数据,调试使用 ROS_INFO("%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x", Receive_Data_Pr[0],Receive_Data_Pr[1],Receive_Data_Pr[2],Receive_Data_Pr[3],Receive_Data_Pr[4],Receive_Data_Pr[5],Receive_Data_Pr[6],Receive_Data_Pr[7], Receive_Data_Pr[8],Receive_Data_Pr[9],Receive_Data_Pr[10],Receive_Data_Pr[11],Receive_Data_Pr[12],Receive_Data_Pr[13],Receive_Data_Pr[14],Receive_Data_Pr[15], Receive_Data_Pr[16],Receive_Data_Pr[17],Receive_Data_Pr[18],Receive_Data_Pr[19],Receive_Data_Pr[20],Receive_Data_Pr[21],Receive_Data_Pr[22],Receive_Data_Pr[23]); */ Receive_Data.rx[count] = Receive_Data_Pr[0]; //Fill the array with serial data //串口数据填入数组 Receive_AutoCharge_Data.rx[count2] = Receive_Data_Pr[0]; Receive_Data.Frame_Header = Receive_Data.rx[0]; //The first part of the data is the frame header 0X7B //数据的第一位是帧头0X7B Receive_Data.Frame_Tail = Receive_Data.rx[23]; //The last bit of data is frame tail 0X7D //数据的最后一位是帧尾0X7D //接收到自动回充数据的帧头、上一个数据是24字节的帧尾,表明自动回充数据开始到来 if((Receive_Data_Pr[0] == AutoCharge_HEADER )||count2>0) count2++; else count2=0; if(Receive_Data_Pr[0] == FRAME_HEADER || count>0) //Ensure that the first data in the array is FRAME_HEADER //确保数组第一个数据为FRAME_HEADER count++; else count=0; //自动回充数据处理 if(count2 == AutoCharge_DATA_SIZE) { count2=0; if(Receive_AutoCharge_Data.rx[AutoCharge_DATA_SIZE-1]==AutoCharge_TAIL) //确认帧尾 { check2 = Check_Sum_AutoCharge(6,0);//校验位计算 if(check2 == Receive_AutoCharge_Data.rx[AutoCharge_DATA_SIZE-2]) //校验正确 { error2=0; } if(error2 == 0) //校验正确开始赋值 { transition_16 = 0; transition_16 |= Receive_AutoCharge_Data.rx[1]<<8; transition_16 |= Receive_AutoCharge_Data.rx[2]; Charging_Current = transition_16/1000+(transition_16 % 1000)*0.001; //充电电流 Red = Receive_AutoCharge_Data.rx[3]; //红外接受状态 Charging = Receive_AutoCharge_Data.rx[4];//小车充电状态 charge_set_state = Receive_AutoCharge_Data.rx[5]; check_AutoCharge_data = true; //数据成功接收标志位 } } } if(count == 24) //Verify the length of the packet //验证数据包的长度 { count=0; //Prepare for the serial port data to be refill into the array //为串口数据重新填入数组做准备 if(Receive_Data.Frame_Tail == FRAME_TAIL) //Verify the frame tail of the packet //验证数据包的帧尾 { check=Check_Sum(22,READ_DATA_CHECK); //BCC check passes or two packets are interlaced //BCC校验通过或者两组数据包交错 if(check == Receive_Data.rx[22]) { error=0; //XOR bit check successful //异或位校验成功 } if(error == 0) { /*//Check receive_data.rx for debugging use //查看Receive_Data.rx,调试使用 ROS_INFO("%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x-%x", Receive_Data.rx[0],Receive_Data.rx[1],Receive_Data.rx[2],Receive_Data.rx[3],Receive_Data.rx[4],Receive_Data.rx[5],Receive_Data.rx[6],Receive_Data.rx[7], Receive_Data.rx[8],Receive_Data.rx[9],Receive_Data.rx[10],Receive_Data.rx[11],Receive_Data.rx[12],Receive_Data.rx[13],Receive_Data.rx[14],Receive_Data.rx[15], Receive_Data.rx[16],Receive_Data.rx[17],Receive_Data.rx[18],Receive_Data.rx[19],Receive_Data.rx[20],Receive_Data.rx[21],Receive_Data.rx[22],Receive_Data.rx[23]); */ Receive_Data.Flag_Stop=Receive_Data.rx[1]; //set aside //预留位 Robot_Vel.X = Odom_Trans(Receive_Data.rx[2],Receive_Data.rx[3]); //Get the speed of the moving chassis in the X direction //获取运动底盘X方向速度 //Robot_Vel.Y = Odom_Trans(Receive_Data.rx[4],Receive_Data.rx[5]); //Get the speed of the moving chassis in the Y direction, The Y speed is only valid in the omnidirectional mobile robot chassis //获取运动底盘Y方向速度,Y速度仅在全向移动机器人底盘有效 //Robot_Vel.Z = Odom_Trans(Receive_Data.rx[6],Receive_Data.rx[7]); //Get the speed of the moving chassis in the Z direction //获取运动底盘Z方向速度 //MPU6050 stands for IMU only and does not refer to a specific model. It can be either MPU6050 or MPU9250 //Mpu6050仅代表IMU,不指代特定型号,既可以是MPU6050也可以是MPU9250 Mpu6050_Data.imu_rol = IMU_Trans(Receive_Data.rx[4],Receive_Data.rx[5]) * 0.01 * 3.14159/180; Mpu6050_Data.imu_yaw = IMU_Trans(Receive_Data.rx[6],Receive_Data.rx[7]) * 0.01 * 3.14159/180; Mpu6050_Data.accele_x_data = IMU_Trans(Receive_Data.rx[8],Receive_Data.rx[9]); //Get the X-axis acceleration of the IMU //获取IMU的X轴加速度 Mpu6050_Data.accele_y_data = IMU_Trans(Receive_Data.rx[10],Receive_Data.rx[11]); //Get the Y-axis acceleration of the IMU //获取IMU的Y轴加速度 Mpu6050_Data.accele_z_data = IMU_Trans(Receive_Data.rx[12],Receive_Data.rx[13]); //Get the Z-axis acceleration of the IMU //获取IMU的Z轴加速度 Mpu6050_Data.gyros_x_data = IMU_Trans(Receive_Data.rx[14],Receive_Data.rx[15]); //Get the X-axis angular velocity of the IMU //获取IMU的X轴角速度 Mpu6050_Data.gyros_y_data = IMU_Trans(Receive_Data.rx[16],Receive_Data.rx[17]); //Get the Y-axis angular velocity of the IMU //获取IMU的Y轴角速度 Mpu6050_Data.gyros_z_data = IMU_Trans(Receive_Data.rx[18],Receive_Data.rx[19]); //Get the Z-axis angular velocity of the IMU //获取IMU的Z轴角速度 //Linear acceleration unit conversion is related to the range of IMU initialization of STM32, where the range is ±2g=19.6m/s^2 //线性加速度单位转化,和STM32的IMU初始化的时候的量程有关,这里量程±2g=19.6m/s^2 Mpu6050.linear_acceleration.x = Mpu6050_Data.accele_x_data * 0.01 * 9.8; Mpu6050.linear_acceleration.y = Mpu6050_Data.accele_y_data * 0.01 * 9.8; Mpu6050.linear_acceleration.z = Mpu6050_Data.accele_z_data * 0.01 * 9.8; //The gyroscope unit conversion is related to the range of STM32's IMU when initialized. Here, the range of IMU's gyroscope is ±500°/s //Because the robot generally has a slow Z-axis speed, reducing the range can improve the accuracy //陀螺仪单位转化,和STM32的IMU初始化的时候的量程有关,这里IMU的陀螺仪的量程是±500°/s //因为机器人一般Z轴速度不快,降低量程可以提高精度 Mpu6050.angular_velocity.x = Mpu6050_Data.gyros_x_data * 0.01 *3.14159/180; Mpu6050.angular_velocity.y = Mpu6050_Data.gyros_y_data * 0.01 *3.14159/180; Mpu6050.angular_velocity.z = Mpu6050_Data.gyros_z_data * 0.01 *3.14159/180; //Get the battery voltage //获取电池电压 transition_16 = 0; transition_16 |= Receive_Data.rx[20]<<8; transition_16 |= Receive_Data.rx[21]; Power_voltage = transition_16/1000+(transition_16 % 1000)*0.001; //Unit conversion millivolt(mv)->volt(v) //单位转换毫伏(mv)->伏(v) return true; } } } return false; } /************************************** Date: January 28, 2021 Function: Loop access to the lower computer data and issue topics 功能: 循环获取下位机数据与发布话题 ***************************************/ void turn_on_robot::Control() { //_Last_Time = ros::Time::now(); _Last_Time = rclcpp::Node::now(); while(rclcpp::ok()) { try { //_Now = ros::Time::now(); _Now = rclcpp::Node::now(); Sampling_Time = (_Now - _Last_Time).seconds(); //Retrieves time interval, which is used to integrate velocity to obtain displacement (mileage) //获取时间间隔,用于积分速度获得位移(里程) if (true == Get_Sensor_Data_New()) //The serial port reads and verifies the data sent by the lower computer, and then the data is converted to international units //通过串口读取并校验下位机发送过来的数据,然后数据转换为国际单位 { //Robot_Pos.X+=(Robot_Vel.X * cos(Robot_Pos.Z) - Robot_Vel.Y * sin(Robot_Pos.Z)) * Sampling_Time; //Calculate the displacement in the X direction, unit: m //计算X方向的位移,单位:m //Robot_Pos.Y+=(Robot_Vel.X * sin(Robot_Pos.Z) + Robot_Vel.Y * cos(Robot_Pos.Z)) * Sampling_Time; //Calculate the displacement in the Y direction, unit: m //计算Y方向的位移,单位:m //Robot_Pos.Z+=Robot_Vel.Z * Sampling_Time; //The angular displacement about the Z axis, in rad //绕Z轴的角位移,单位:rad Robot_Pos.X+=(Robot_Vel.X * cos(Mpu6050_Data.imu_yaw)) * Sampling_Time; //Calculate the displacement in the X direction, unit: m //计算X方向的位移,单位:m Robot_Pos.Y+=(Robot_Vel.X * sin(Mpu6050_Data.imu_yaw)) * Sampling_Time; //Calculate the displacement in the Y direction, unit: m //计算Y方向的位移,单位:m //Robot_Pos.Z = 0 ; //Calculate the three-axis attitude from the IMU with the angular velocity around the three-axis and the three-axis acceleration //通过IMU绕三轴角速度与三轴加速度计算三轴姿态 Quaternion_Solution(Mpu6050.angular_velocity.x, Mpu6050.angular_velocity.y, Mpu6050.angular_velocity.z,\ Mpu6050.linear_acceleration.x, Mpu6050.linear_acceleration.y, Mpu6050.linear_acceleration.z); Publish_Odom(); //Pub the speedometer topic //发布里程计话题 Publish_ImuSensor(); //Pub the IMU topic //发布IMU话题 Publish_Voltage(); //Pub the topic of power supply voltage //发布电源电压话题 _Last_Time = _Now; //Record the time and use it to calculate the time interval //记录时间,用于计算时间间隔 } //自动回充数据话题 if(check_AutoCharge_data) { Publish_Charging(); //Pub a topic about whether the robot is charging //发布机器人是否在充电的话题 Publish_RED(); //Pub the topic whether the robot finds the infrared signal (charging station) //发布机器人是否寻找到红外信号(充电桩)的话题 Publish_ChargingCurrent(); //Pub the charging current topic //发布充电电流话题 check_AutoCharge_data = false; } rclcpp::spin_some(this->get_node_base_interface()); //The loop waits for the callback function //循环等待回调函数 } catch (const rclcpp::exceptions::RCLError & e ) { RCLCPP_ERROR(this->get_logger(),"unexpectedly failed whith %s",e.what()); } } } /************************************** Date: January 28, 2021 Function: Constructor, executed only once, for initialization 功能: 构造函数, 只执行一次,用于初始化 ***************************************/ turn_on_robot::turn_on_robot():rclcpp::Node ("wheeltec_robot") { Sampling_Time=0; Power_voltage=0; //Clear the data //清空数据 memset(&Robot_Pos, 0, sizeof(Robot_Pos)); memset(&Robot_Vel, 0, sizeof(Robot_Vel)); memset(&Receive_Data, 0, sizeof(Receive_Data)); memset(&Send_Data, 0, sizeof(Send_Data)); memset(&Mpu6050_Data, 0, sizeof(Mpu6050_Data)); //ros::NodeHandle private_nh("~"); //Create a node handle //创建节点句柄 //The private_nh.param() entry parameter corresponds to the initial value of the name of the parameter variable on the parameter server //private_nh.param()入口参数分别对应:参数服务器上的名称 参数变量名 初始值 this->declare_parameter<int>("serial_baud_rate",115200); this->declare_parameter<std::string>("usart_port_name", "/dev/ttyACM0"); this->declare_parameter<std::string>("odom_frame_id", "odom_combined"); this->declare_parameter<std::string>("robot_frame_id", "base_footprint"); this->declare_parameter<std::string>("gyro_frame_id", "gyro_link"); this->get_parameter("serial_baud_rate", serial_baud_rate);//Communicate baud rate 115200 to the lower machine //和下位机通信波特率115200 this->get_parameter("usart_port_name", usart_port_name);//Fixed serial port number //固定串口号 this->get_parameter("odom_frame_id", odom_frame_id);//The odometer topic corresponds to the parent TF coordinate //里程计话题对应父TF坐标 this->get_parameter("robot_frame_id", robot_frame_id);//The odometer topic corresponds to sub-TF coordinates //里程计话题对应子TF坐标 this->get_parameter("gyro_frame_id", gyro_frame_id);//IMU topics correspond to TF coordinates //IMU话题对应TF坐标 odom_publisher = create_publisher<nav_msgs::msg::Odometry>("odom", 2);//Create the odometer topic publisher //创建里程计话题发布者 imu_publisher = create_publisher<sensor_msgs::msg::Imu>("imu/data_raw", 2); //Create an IMU topic publisher //创建IMU话题发布者 voltage_publisher = create_publisher<std_msgs::msg::Float32>("PowerVoltage", 1);//Create a battery-voltage topic publisher //创建电池电压话题发布者 //回充发布者 Charging_publisher = create_publisher<std_msgs::msg::Bool>("robot_charging_flag", 10); Charging_current_publisher = create_publisher<std_msgs::msg::Float32>("robot_charging_current", 10); RED_publisher = create_publisher<std_msgs::msg::UInt8>("robot_red_flag", 10); //回充订阅者 Red_Vel_Sub = create_subscription<geometry_msgs::msg::Twist>( "red_vel", 10, std::bind(&turn_on_robot::Red_Vel_Callback, this, std::placeholders::_1)); Recharge_Flag_Sub = create_subscription<std_msgs::msg::Int8>( "robot_recharge_flag", 10, std::bind(&turn_on_robot::Recharge_Flag_Callback, this,std::placeholders::_1)); //回充服务提供 SetCharge_Service=this->create_service<turtlesim::srv::Spawn>\ ("/set_charge",std::bind(&turn_on_robot::Set_Charge_Callback,this, std::placeholders::_1 ,std::placeholders::_2)); //Set the velocity control command callback function //速度控制命令订阅回调函数设置 Cmd_Vel_Sub = create_subscription<geometry_msgs::msg::Twist>( "cmd_vel", 2, std::bind(&turn_on_robot::Cmd_Vel_Callback, this, _1)); RCLCPP_INFO(this->get_logger(),"wheeltec_robot Data ready"); //Prompt message //提示信息 try { //Attempts to initialize and open the serial port //尝试初始化与开启串口 Stm32_Serial.setPort(usart_port_name); //Select the serial port number to enable //选择要开启的串口号 Stm32_Serial.setBaudrate(serial_baud_rate); //Set the baud rate //设置波特率 serial::Timeout _time = serial::Timeout::simpleTimeout(2000); //Timeout //超时等待 Stm32_Serial.setTimeout(_time); Stm32_Serial.open(); //Open the serial port //开启串口 } catch (serial::IOException& e) { RCLCPP_ERROR(this->get_logger(),"wheeltec_robot can not open serial port,Please check the serial port cable! "); //If opening the serial port fails, an error message is printed //如果开启串口失败,打印错误信息 } if(Stm32_Serial.isOpen()) { RCLCPP_INFO(this->get_logger(),"wheeltec_robot serial port opened"); //Serial port opened successfully //串口开启成功提示 } } /************************************** Date: January 28, 2021 Function: Destructor, executed only once and called by the system when an object ends its life cycle 功能: 析构函数,只执行一次,当对象结束其生命周期时系统会调用这个函数 ***************************************/ turn_on_robot::~turn_on_robot() { //Sends the stop motion command to the lower machine before the turn_on_robot object ends //对象turn_on_robot结束前向下位机发送停止运动命令 Send_Data.tx[0]=0x06; Send_Data.tx[1] = FRAME_HEADER; Send_Data.tx[2] = 0; //The target velocity of the X-axis of the robot //机器人X轴的目标线速度 Send_Data.tx[4] = 0; Send_Data.tx[3] = 0; //The target velocity of the Y-axis of the robot //机器人Y轴的目标线速度 Send_Data.tx[6] = 0; Send_Data.tx[5] = 0; //The target velocity of the Z-axis of the robot //机器人Z轴的目标角速度 Send_Data.tx[8] = 0; Send_Data.tx[7] = 0; Send_Data.tx[9]=Check_Sum(9,SEND_DATA_CHECK); //Check the bits for the Check_Sum function //校验位,规则参见Check_Sum函数 Send_Data.tx[10]=0x0d; Send_Data.tx[11]=0x0a; try { Stm32_Serial.write(Send_Data.tx,sizeof (Send_Data.tx)); //Send data to the serial port //向串口发数据 } catch (serial::IOException& e) { RCLCPP_ERROR(this->get_logger(),"Unable to send data through serial port"); //If sending data fails, an error message is printed //如果发送数据失败,打印错误信息 } Stm32_Serial.close(); //Close the serial port //关闭串口 RCLCPP_INFO(this->get_logger(),"Shutting down"); //Prompt message //提示信息 } turn_on_wheeltec_robot.launch.py文件代码为: import os from pathlib import Path import launch from launch.actions import SetEnvironmentVariable from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.actions import (DeclareLaunchArgument, GroupAction, IncludeLaunchDescription, SetEnvironmentVariable) from launch.launch_description_sources import PythonLaunchDescriptionSource from launch.substitutions import LaunchConfiguration, PythonExpression from launch_ros.actions import PushRosNamespace import launch_ros.actions from launch.conditions import IfCondition from launch.conditions import UnlessCondition def generate_launch_description(): # Get the launch directory bringup_dir = get_package_share_directory('turn_on_wheeltec_robot') launch_dir = os.path.join(bringup_dir, 'launch') ekf_config = Path(get_package_share_directory('turn_on_wheeltec_robot'), 'config', 'ekf.yaml') ekf_carto_config = Path(get_package_share_directory('turn_on_wheeltec_robot'), 'config', 'ekf_carto.yaml') imu_config = Path(get_package_share_directory('turn_on_wheeltec_robot'), 'config', 'imu.yaml') carto_slam = LaunchConfiguration('carto_slam', default='false') carto_slam_dec = DeclareLaunchArgument('carto_slam',default_value='false') wheeltec_robot = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(launch_dir, 'base_serial.launch.py')), ) robot_ekf = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(launch_dir, 'wheeltec_ekf.launch.py')), launch_arguments={'carto_slam':carto_slam}.items(), ) base_to_link = launch_ros.actions.Node( package='tf2_ros', executable='static_transform_publisher', name='base_to_link', arguments=['0', '0', '0','0', '0','0','base_footprint','base_link'], ) base_to_gyro = launch_ros.actions.Node( package='tf2_ros', executable='static_transform_publisher', name='base_to_gyro', arguments=['0', '0', '0','0', '0','0','base_link','gyro_link'], ) imu_filter_node = launch_ros.actions.Node( package='imu_filter_madgwick', executable='imu_filter_madgwick_node', parameters=[imu_config] ) # joint_state_publisher_node = launch_ros.actions.Node( # package='joint_state_publisher', # executable='joint_state_publisher', # name='joint_state_publisher', # ) #select a robot model,the default model is mini_mec #minibot.launch.py contains commonly used robot models #launch_arguments choices:mini_mec/mini_akm/mini_tank/mini_4wd/mini_diff/mini_omni/brushless_senior_diff #!!!At the same time, you need to modify ld.add_action(minibot_type) and #ld.add_action(flagship_type) minibot_type = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(launch_dir, 'robot_mode_description_minibot.launch.py')), launch_arguments={'bike_robot': 'true'}.items(), ) #robot_mode_description.launch.py contains flagship products, usually larger chassis robots #launch_arguments choices: #senior_akm/top_akm_bs/top_akm_dl #senior_mec_bs/senior_mec_dl/top_mec_bs/top_mec_dl/ mec_EightDrive_robot/flagship_mec_bs_robot/flagship_mec_dl_robot�� #senior_omni/top_omni #senior_4wd_bs_robot/senior_4wd_dl_robot/flagship_4wd_bs_robot/flagship_4wd_dl_robot/top_4wd_bs_robot/top_4wd_dl_robot #senior_diff_robot/four_wheel_diff_bs/four_wheel_diff_dl/flagship_four_wheel_diff_bs_robot/flagship_four_wheel_diff_dl_robot #!!!At the same time, you need to modify ld.add_action(flagship_type) and #ld.add_action(minibot_type) flagship_type = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(launch_dir, 'robot_mode_description.launch.py')), launch_arguments={'senior_akm': 'true'}.items(), ) ld = LaunchDescription() ld.add_action(minibot_type) #ld.add_action(flagship_type) ld.add_action(carto_slam_dec) ld.add_action(wheeltec_robot) ld.add_action(base_to_link) ld.add_action(base_to_gyro) # ld.add_action(joint_state_publisher_node) ld.add_action(imu_filter_node) ld.add_action(robot_ekf) return ld base_serial.launch.py文件代码为: from launch import LaunchDescription from launch.actions import DeclareLaunchArgument from launch.substitutions import LaunchConfiguration from launch.conditions import IfCondition from launch.conditions import UnlessCondition import launch_ros.actions #def launch(launch_descriptor, argv): def generate_launch_description(): return LaunchDescription([ launch_ros.actions.Node( package='turn_on_wheeltec_robot', executable='wheeltec_robot_node', output='screen', parameters=[{'usart_port_name': '/dev/ttyACM0', 'serial_baud_rate':115200, 'robot_frame_id': 'base_footprint', 'odom_frame_id': 'odom_combined', 'cmd_vel': 'cmd_vel',}], ) ]) robot_mode_description_minibot.launch.py文件代码为: import os from ament_index_python.packages import get_package_share_directory import launch_ros.actions from launch import LaunchDescription from launch.actions import DeclareLaunchArgument, GroupAction, SetEnvironmentVariable from launch.conditions import IfCondition from launch.substitutions import LaunchConfiguration, PythonExpression from launch_ros.actions import LoadComposableNodes from launch_ros.actions import Node from launch_ros.descriptions import ComposableNode from nav2_common.launch import RewrittenYaml def generate_robot_node(robot_urdf,child): return launch_ros.actions.Node( package='robot_state_publisher', executable='robot_state_publisher', name=f'robot_state_publisher_{child}', arguments=[os.path.join(get_package_share_directory('wheeltec_robot_urdf'), 'urdf', robot_urdf)], ) def generate_static_transform_publisher_node(translation, rotation, parent, child): return launch_ros.actions.Node( package='tf2_ros', executable='static_transform_publisher', name=f'base_to_{child}', arguments=[translation[0], translation[1], translation[2], rotation[0], rotation[1], rotation[2], parent, child], ) def generate_launch_description(): bike_robot = LaunchConfiguration('bike_robot', default='false') bike_robot_ = GroupAction( condition=IfCondition(bike_robot), actions=[ generate_robot_node('xuan_bike_robot.urdf','bike_robot'), generate_static_transform_publisher_node(['0.048', '0', '0.18'], ['0', '0', '0'], 'base_link', 'laser'), generate_static_transform_publisher_node(['0.048', '0', '0.18'], ['0', '0', '0'], 'base_link', 'camera_link'), ]) # Create the launch description and populate ld = LaunchDescription() # Set environment variables # Declare the launch options #ld.add_action(declare_use_composition_cmd) # Add the actions to launch all of the localiztion nodes ld.add_action(mini_mec_) ld.add_action(mini_akm_) ld.add_action(mini_tank_) ld.add_action(mini_4wd_) ld.add_action(mini_diff_) ld.add_action(brushless_senior_diff_) ld.add_action(bike_robot_) return ld xuan_bike_robot.urdf文件代码为: <?xml version="1.0"?> <robot name="wheeltec_robot"> <link name="base_link"> <visual> <geometry> <mesh filename="file:///home/deepbot/ros-relate/wheeltec_ros2/src/wheeltec_robot_urdf/wheeltec_robot_urdf/meshes/Xuan-release.stl"scale="0.001 0.001 0.001"/> </geometry> <origin xyz="0 0 0" rpy="0 0 0"/> <material name="blue"> <color rgba="0 0 0.8 0.5"/> </material> </visual> </link> </robot>
05-14
yuan@yuan-virtual-machine:~/catkin_ws$ roslaunch ur_robot_driver ur5_bringup.launch robot_ip:=192.168.1.120 ... logging to /home/yuan/.ros/log/a5368822-6eb4-11f0-afbe-05d467d6740f/roslaunch-yuan-virtual-machine-9380.log Checking log directory for disk usage. This may take a while. Press Ctrl-C to interrupt Done checking log file disk usage. Usage is <1GB. started roslaunch server http://yuan-virtual-machine:37881/ SUMMARY ======== PARAMETERS * /controller_stopper/consistent_controllers: ['joint_state_con... * /force_torque_sensor_controller/publish_rate: 125 * /force_torque_sensor_controller/type: force_torque_sens... * /forward_cartesian_traj_controller/joints: ['shoulder_pan_jo... * /forward_cartesian_traj_controller/type: pass_through_cont... * /forward_joint_traj_controller/joints: ['shoulder_pan_jo... * /forward_joint_traj_controller/type: pass_through_cont... * /hardware_control_loop/loop_hz: 125 * /joint_based_cartesian_traj_controller/base: base * /joint_based_cartesian_traj_controller/joints: ['shoulder_pan_jo... * /joint_based_cartesian_traj_controller/tip: tool0 * /joint_based_cartesian_traj_controller/type: position_controll... * /joint_group_vel_controller/joints: ['shoulder_pan_jo... * /joint_group_vel_controller/type: velocity_controll... * /joint_state_controller/publish_rate: 125 * /joint_state_controller/type: joint_state_contr... * /pos_joint_traj_controller/action_monitor_rate: 20 * /pos_joint_traj_controller/constraints/elbow_joint/goal: 0.1 * /pos_joint_traj_controller/constraints/elbow_joint/trajectory: 0.2 * /pos_joint_traj_controller/constraints/goal_time: 0.6 * /pos_joint_traj_controller/constraints/shoulder_lift_joint/goal: 0.1 * /pos_joint_traj_controller/constraints/shoulder_lift_joint/trajectory: 0.2 * /pos_joint_traj_controller/constraints/shoulder_pan_joint/goal: 0.1 * /pos_joint_traj_controller/constraints/shoulder_pan_joint/trajectory: 0.2 * /pos_joint_traj_controller/constraints/stopped_velocity_tolerance: 0.05 * /pos_joint_traj_controller/constraints/wrist_1_joint/goal: 0.1 * /pos_joint_traj_controller/constraints/wrist_1_joint/trajectory: 0.2 * /pos_joint_traj_controller/constraints/wrist_2_joint/goal: 0.1 * /pos_joint_traj_controller/constraints/wrist_2_joint/trajectory: 0.2 * /pos_joint_traj_controller/constraints/wrist_3_joint/goal: 0.1 * /pos_joint_traj_controller/constraints/wrist_3_joint/trajectory: 0.2 * /pos_joint_traj_controller/joints: ['shoulder_pan_jo... * /pos_joint_traj_controller/state_publish_rate: 125 * /pos_joint_traj_controller/stop_trajectory_duration: 0.5 * /pos_joint_traj_controller/type: position_controll... * /pose_based_cartesian_traj_controller/base: base * /pose_based_cartesian_traj_controller/joints: ['shoulder_pan_jo... * /pose_based_cartesian_traj_controller/tip: tool0_controller * /pose_based_cartesian_traj_controller/type: pose_controllers/... * /robot_description: <?xml version="1.... * /robot_status_controller/handle_name: industrial_robot_... * /robot_status_controller/publish_rate: 10 * /robot_status_controller/type: industrial_robot_... * /rosdistro: noetic * /rosversion: 1.17.4 * /scaled_pos_joint_traj_controller/action_monitor_rate: 20 * /scaled_pos_joint_traj_controller/constraints/elbow_joint/goal: 0.1 * /scaled_pos_joint_traj_controller/constraints/elbow_joint/trajectory: 0.2 * /scaled_pos_joint_traj_controller/constraints/goal_time: 0.6 * /scaled_pos_joint_traj_controller/constraints/shoulder_lift_joint/goal: 0.1 * /scaled_pos_joint_traj_controller/constraints/shoulder_lift_joint/trajectory: 0.2 * /scaled_pos_joint_traj_controller/constraints/shoulder_pan_joint/goal: 0.1 * /scaled_pos_joint_traj_controller/constraints/shoulder_pan_joint/trajectory: 0.2 * /scaled_pos_joint_traj_controller/constraints/stopped_velocity_tolerance: 0.05 * /scaled_pos_joint_traj_controller/constraints/wrist_1_joint/goal: 0.1 * /scaled_pos_joint_traj_controller/constraints/wrist_1_joint/trajectory: 0.2 * /scaled_pos_joint_traj_controller/constraints/wrist_2_joint/goal: 0.1 * /scaled_pos_joint_traj_controller/constraints/wrist_2_joint/trajectory: 0.2 * /scaled_pos_joint_traj_controller/constraints/wrist_3_joint/goal: 0.1 * /scaled_pos_joint_traj_controller/constraints/wrist_3_joint/trajectory: 0.2 * /scaled_pos_joint_traj_controller/joints: ['shoulder_pan_jo... * /scaled_pos_joint_traj_controller/state_publish_rate: 125 * /scaled_pos_joint_traj_controller/stop_trajectory_duration: 0.5 * /scaled_pos_joint_traj_controller/type: position_controll... * /scaled_vel_joint_traj_controller/action_monitor_rate: 20 * /scaled_vel_joint_traj_controller/constraints/elbow_joint/goal: 0.1 * /scaled_vel_joint_traj_controller/constraints/elbow_joint/trajectory: 0.1 * /scaled_vel_joint_traj_controller/constraints/goal_time: 0.6 * /scaled_vel_joint_traj_controller/constraints/shoulder_lift_joint/goal: 0.1 * /scaled_vel_joint_traj_controller/constraints/shoulder_lift_joint/trajectory: 0.1 * /scaled_vel_joint_traj_controller/constraints/shoulder_pan_joint/goal: 0.1 * /scaled_vel_joint_traj_controller/constraints/shoulder_pan_joint/trajectory: 0.1 * /scaled_vel_joint_traj_controller/constraints/stopped_velocity_tolerance: 0.05 * /scaled_vel_joint_traj_controller/constraints/wrist_1_joint/goal: 0.1 * /scaled_vel_joint_traj_controller/constraints/wrist_1_joint/trajectory: 0.1 * /scaled_vel_joint_traj_controller/constraints/wrist_2_joint/goal: 0.1 * /scaled_vel_joint_traj_controller/constraints/wrist_2_joint/trajectory: 0.1 * /scaled_vel_joint_traj_controller/constraints/wrist_3_joint/goal: 0.1 * /scaled_vel_joint_traj_controller/constraints/wrist_3_joint/trajectory: 0.1 * /scaled_vel_joint_traj_controller/gains/elbow_joint/d: 0.1 * /scaled_vel_joint_traj_controller/gains/elbow_joint/i: 0.05 * /scaled_vel_joint_traj_controller/gains/elbow_joint/i_clamp: 1 * /scaled_vel_joint_traj_controller/gains/elbow_joint/p: 5.0 * /scaled_vel_joint_traj_controller/gains/shoulder_lift_joint/d: 0.1 * /scaled_vel_joint_traj_controller/gains/shoulder_lift_joint/i: 0.05 * /scaled_vel_joint_traj_controller/gains/shoulder_lift_joint/i_clamp: 1 * /scaled_vel_joint_traj_controller/gains/shoulder_lift_joint/p: 5.0 * /scaled_vel_joint_traj_controller/gains/shoulder_pan_joint/d: 0.1 * /scaled_vel_joint_traj_controller/gains/shoulder_pan_joint/i: 0.05 * /scaled_vel_joint_traj_controller/gains/shoulder_pan_joint/i_clamp: 1 * /scaled_vel_joint_traj_controller/gains/shoulder_pan_joint/p: 5.0 * /scaled_vel_joint_traj_controller/gains/wrist_1_joint/d: 0.1 * /scaled_vel_joint_traj_controller/gains/wrist_1_joint/i: 0.05 * /scaled_vel_joint_traj_controller/gains/wrist_1_joint/i_clamp: 1 * /scaled_vel_joint_traj_controller/gains/wrist_1_joint/p: 5.0 * /scaled_vel_joint_traj_controller/gains/wrist_2_joint/d: 0.1 * /scaled_vel_joint_traj_controller/gains/wrist_2_joint/i: 0.05 * /scaled_vel_joint_traj_controller/gains/wrist_2_joint/i_clamp: 1 * /scaled_vel_joint_traj_controller/gains/wrist_2_joint/p: 5.0 * /scaled_vel_joint_traj_controller/gains/wrist_3_joint/d: 0.1 * /scaled_vel_joint_traj_controller/gains/wrist_3_joint/i: 0.05 * /scaled_vel_joint_traj_controller/gains/wrist_3_joint/i_clamp: 1 * /scaled_vel_joint_traj_controller/gains/wrist_3_joint/p: 5.0 * /scaled_vel_joint_traj_controller/joints: ['shoulder_pan_jo... * /scaled_vel_joint_traj_controller/state_publish_rate: 125 * /scaled_vel_joint_traj_controller/stop_trajectory_duration: 0.5 * /scaled_vel_joint_traj_controller/type: velocity_controll... * /scaled_vel_joint_traj_controller/velocity_ff/elbow_joint: 1.0 * /scaled_vel_joint_traj_controller/velocity_ff/shoulder_lift_joint: 1.0 * /scaled_vel_joint_traj_controller/velocity_ff/shoulder_pan_joint: 1.0 * /scaled_vel_joint_traj_controller/velocity_ff/wrist_1_joint: 1.0 * /scaled_vel_joint_traj_controller/velocity_ff/wrist_2_joint: 1.0 * /scaled_vel_joint_traj_controller/velocity_ff/wrist_3_joint: 1.0 * /speed_scaling_state_controller/publish_rate: 125 * /speed_scaling_state_controller/type: scaled_controller... * /twist_controller/frame_id: tool0_controller * /twist_controller/joints: ['shoulder_pan_jo... * /twist_controller/publish_rate: 125 * /twist_controller/type: ros_controllers_c... * /ur_hardware_interface/headless_mode: False * /ur_hardware_interface/input_recipe_file: /opt/ros/noetic/s... * /ur_hardware_interface/joints: ['shoulder_pan_jo... * /ur_hardware_interface/kinematics/forearm/pitch: 0 * /ur_hardware_interface/kinematics/forearm/roll: 0 * /ur_hardware_interface/kinematics/forearm/x: -0.425 * /ur_hardware_interface/kinematics/forearm/y: 0 * /ur_hardware_interface/kinematics/forearm/yaw: 0 * /ur_hardware_interface/kinematics/forearm/z: 0 * /ur_hardware_interface/kinematics/hash: calib_20954911754... * /ur_hardware_interface/kinematics/shoulder/pitch: 0 * /ur_hardware_interface/kinematics/shoulder/roll: 0 * /ur_hardware_interface/kinematics/shoulder/x: 0 * /ur_hardware_interface/kinematics/shoulder/y: 0 * /ur_hardware_interface/kinematics/shoulder/yaw: 0 * /ur_hardware_interface/kinematics/shoulder/z: 0.089159 * /ur_hardware_interface/kinematics/upper_arm/pitch: 0 * /ur_hardware_interface/kinematics/upper_arm/roll: 1.570796327 * /ur_hardware_interface/kinematics/upper_arm/x: 0 * /ur_hardware_interface/kinematics/upper_arm/y: 0 * /ur_hardware_interface/kinematics/upper_arm/yaw: 0 * /ur_hardware_interface/kinematics/upper_arm/z: 0 * /ur_hardware_interface/kinematics/wrist_1/pitch: 0 * /ur_hardware_interface/kinematics/wrist_1/roll: 0 * /ur_hardware_interface/kinematics/wrist_1/x: -0.39225 * /ur_hardware_interface/kinematics/wrist_1/y: 0 * /ur_hardware_interface/kinematics/wrist_1/yaw: 0 * /ur_hardware_interface/kinematics/wrist_1/z: 0.10915 * /ur_hardware_interface/kinematics/wrist_2/pitch: 0 * /ur_hardware_interface/kinematics/wrist_2/roll: 1.570796327 * /ur_hardware_interface/kinematics/wrist_2/x: 0 * /ur_hardware_interface/kinematics/wrist_2/y: -0.09465 * /ur_hardware_interface/kinematics/wrist_2/yaw: 0 * /ur_hardware_interface/kinematics/wrist_2/z: -1.94130395089760... * /ur_hardware_interface/kinematics/wrist_3/pitch: 3.141592653589793 * /ur_hardware_interface/kinematics/wrist_3/roll: 1.570796326589793 * /ur_hardware_interface/kinematics/wrist_3/x: 0 * /ur_hardware_interface/kinematics/wrist_3/y: 0.0823 * /ur_hardware_interface/kinematics/wrist_3/yaw: 3.141592653589793 * /ur_hardware_interface/kinematics/wrist_3/z: -1.68800121668117... * /ur_hardware_interface/output_recipe_file: /opt/ros/noetic/s... * /ur_hardware_interface/reverse_ip: * /ur_hardware_interface/reverse_port: 50001 * /ur_hardware_interface/robot_ip: 192.168.1.120 * /ur_hardware_interface/robot_receive_timeout: 0.02 * /ur_hardware_interface/script_command_port: 50004 * /ur_hardware_interface/script_file: /opt/ros/noetic/s... * /ur_hardware_interface/script_sender_port: 50002 * /ur_hardware_interface/servoj_gain: 2000 * /ur_hardware_interface/servoj_lookahead_time: 0.03 * /ur_hardware_interface/tf_prefix: * /ur_hardware_interface/tool_baud_rate: 115200 * /ur_hardware_interface/tool_parity: 0 * /ur_hardware_interface/tool_rx_idle_chars: 1.5 * /ur_hardware_interface/tool_stop_bits: 1 * /ur_hardware_interface/tool_tx_idle_chars: 3.5 * /ur_hardware_interface/tool_voltage: 0 * /ur_hardware_interface/trajectory_port: 50003 * /ur_hardware_interface/use_spline_interpolation: True * /ur_hardware_interface/use_tool_communication: False * /vel_joint_traj_controller/action_monitor_rate: 20 * /vel_joint_traj_controller/constraints/elbow_joint/goal: 0.1 * /vel_joint_traj_controller/constraints/elbow_joint/trajectory: 0.1 * /vel_joint_traj_controller/constraints/goal_time: 0.6 * /vel_joint_traj_controller/constraints/shoulder_lift_joint/goal: 0.1 * /vel_joint_traj_controller/constraints/shoulder_lift_joint/trajectory: 0.1 * /vel_joint_traj_controller/constraints/shoulder_pan_joint/goal: 0.1 * /vel_joint_traj_controller/constraints/shoulder_pan_joint/trajectory: 0.1 * /vel_joint_traj_controller/constraints/stopped_velocity_tolerance: 0.05 * /vel_joint_traj_controller/constraints/wrist_1_joint/goal: 0.1 * /vel_joint_traj_controller/constraints/wrist_1_joint/trajectory: 0.1 * /vel_joint_traj_controller/constraints/wrist_2_joint/goal: 0.1 * /vel_joint_traj_controller/constraints/wrist_2_joint/trajectory: 0.1 * /vel_joint_traj_controller/constraints/wrist_3_joint/goal: 0.1 * /vel_joint_traj_controller/constraints/wrist_3_joint/trajectory: 0.1 * /vel_joint_traj_controller/gains/elbow_joint/d: 0.1 * /vel_joint_traj_controller/gains/elbow_joint/i: 0.05 * /vel_joint_traj_controller/gains/elbow_joint/i_clamp: 1 * /vel_joint_traj_controller/gains/elbow_joint/p: 5.0 * /vel_joint_traj_controller/gains/shoulder_lift_joint/d: 0.1 * /vel_joint_traj_controller/gains/shoulder_lift_joint/i: 0.05 * /vel_joint_traj_controller/gains/shoulder_lift_joint/i_clamp: 1 * /vel_joint_traj_controller/gains/shoulder_lift_joint/p: 5.0 * /vel_joint_traj_controller/gains/shoulder_pan_joint/d: 0.1 * /vel_joint_traj_controller/gains/shoulder_pan_joint/i: 0.05 * /vel_joint_traj_controller/gains/shoulder_pan_joint/i_clamp: 1 * /vel_joint_traj_controller/gains/shoulder_pan_joint/p: 5.0 * /vel_joint_traj_controller/gains/wrist_1_joint/d: 0.1 * /vel_joint_traj_controller/gains/wrist_1_joint/i: 0.05 * /vel_joint_traj_controller/gains/wrist_1_joint/i_clamp: 1 * /vel_joint_traj_controller/gains/wrist_1_joint/p: 5.0 * /vel_joint_traj_controller/gains/wrist_2_joint/d: 0.1 * /vel_joint_traj_controller/gains/wrist_2_joint/i: 0.05 * /vel_joint_traj_controller/gains/wrist_2_joint/i_clamp: 1 * /vel_joint_traj_controller/gains/wrist_2_joint/p: 5.0 * /vel_joint_traj_controller/gains/wrist_3_joint/d: 0.1 * /vel_joint_traj_controller/gains/wrist_3_joint/i: 0.05 * /vel_joint_traj_controller/gains/wrist_3_joint/i_clamp: 1 * /vel_joint_traj_controller/gains/wrist_3_joint/p: 5.0 * /vel_joint_traj_controller/joints: ['shoulder_pan_jo... * /vel_joint_traj_controller/state_publish_rate: 125 * /vel_joint_traj_controller/stop_trajectory_duration: 0.5 * /vel_joint_traj_controller/type: velocity_controll... * /vel_joint_traj_controller/velocity_ff/elbow_joint: 1.0 * /vel_joint_traj_controller/velocity_ff/shoulder_lift_joint: 1.0 * /vel_joint_traj_controller/velocity_ff/shoulder_pan_joint: 1.0 * /vel_joint_traj_controller/velocity_ff/wrist_1_joint: 1.0 * /vel_joint_traj_controller/velocity_ff/wrist_2_joint: 1.0 * /vel_joint_traj_controller/velocity_ff/wrist_3_joint: 1.0 NODES / controller_stopper (ur_robot_driver/controller_stopper_node) robot_state_publisher (robot_state_publisher/robot_state_publisher) ros_control_controller_spawner (controller_manager/spawner) ros_control_stopped_spawner (controller_manager/spawner) ur_hardware_interface (ur_robot_driver/ur_robot_driver_node) /ur_hardware_interface/ ur_robot_state_helper (ur_robot_driver/robot_state_helper) auto-starting new master process[master]: started with pid [9390] ROS_MASTER_URI=http://localhost:11311 setting /run_id to a5368822-6eb4-11f0-afbe-05d467d6740f process[rosout-1]: started with pid [9400] started core service [/rosout] process[robot_state_publisher-2]: started with pid [9407] process[ur_hardware_interface-3]: started with pid [9408] process[ros_control_controller_spawner-4]: started with pid [9409] process[ros_control_stopped_spawner-5]: started with pid [9411] process[controller_stopper-6]: started with pid [9416] [INFO] [1754038260.481594732]: Initializing dashboard client [INFO] [1754038260.487405631]: Connected: Universal Robots Dashboard Server process[ur_hardware_interface/ur_robot_state_helper-7]: started with pid [9425] [INFO] [1754038260.506479611]: Waiting for controller manager service to come up on /controller_manager/switch_controller [INFO] [1754038260.508678646]: waitForService: Service [/controller_manager/switch_controller] has not been advertised, waiting... [INFO] [1754038260.510850350]: Initializing urdriver [WARN] [1754038260.515403691]: Your system/user seems not to be setup for FIFO scheduling. We recommend using a lowlatency kernel with FIFO scheduling. See https://docs.universal-robots.com/Universal_Robots_ROS_Documentation/doc/ur_client_library/doc/real_time.html for details. [INFO] [1754038260.758709]: Controller Spawner: Waiting for service controller_manager/load_controller [INFO] [1754038260.858406]: Controller Spawner: Waiting for service controller_manager/load_controller [INFO] [1754038260.872882426]: Negotiated RTDE protocol version to 2. [INFO] [1754038260.874552649]: Setting up RTDE communication with frequency 125.000000 [INFO] [1754038261.909298599]: Starting primary client pipeline [INFO] [1754038261.911420659]: Checking if calibration data matches connected robot. [ERROR] [1754038262.911943409]: The calibration parameters of the connected robot don't match the ones from the given kinematics config file. Please be aware that this can lead to critical inaccuracies of tcp positions. Use the ur_calibration tool to extract the correct calibration from the robot and pass that into the description. See [https://github.com/UniversalRobots/Universal_Robots_ROS_Driver#extract-calibration-information] for details. [WARN] [1754038262.924839016]: Your system/user seems not to be setup for FIFO scheduling. We recommend using a lowlatency kernel with FIFO scheduling. See https://docs.universal-robots.com/Universal_Robots_ROS_Documentation/doc/ur_client_library/doc/real_time.html for details. [INFO] [1754038262.926228217]: Loaded ur_robot_driver hardware_interface [INFO] [1754038262.968037918]: waitForService: Service [/controller_manager/switch_controller] is now available. [INFO] [1754038262.968304438]: Service available. [INFO] [1754038262.968342370]: Waiting for controller list service to come up on /controller_manager/list_controllers [INFO] [1754038262.969123410]: Service available. [INFO] [1754038262.977452]: Controller Spawner: Waiting for service controller_manager/switch_controller [INFO] [1754038262.980766]: Controller Spawner: Waiting for service controller_manager/unload_controller [INFO] [1754038262.983952]: Loading controller: pos_joint_traj_controller [INFO] [1754038263.034800]: Loading controller: joint_group_vel_controller [INFO] [1754038263.049548]: Controller Spawner: Loaded controllers: pos_joint_traj_controller, joint_group_vel_controller [INFO] [1754038263.181526427]: Robot mode is now POWER_OFF [INFO] [1754038263.183844862]: Robot's safety mode is now NORMAL [INFO] [1754038263.184011]: Controller Spawner: Waiting for service controller_manager/switch_controller [INFO] [1754038263.187691]: Controller Spawner: Waiting for service controller_manager/unload_controller [INFO] [1754038263.191352]: Loading controller: joint_state_controller [INFO] [1754038263.209029]: Loading controller: scaled_pos_joint_traj_controller [INFO] [1754038263.257595]: Loading controller: speed_scaling_state_controller [INFO] [1754038263.273802]: Loading controller: force_torque_sensor_controller [INFO] [1754038263.289856]: Controller Spawner: Loaded controllers: joint_state_controller, scaled_pos_joint_traj_controller, speed_scaling_state_controller, force_torque_sensor_controller [INFO] [1754038263.297306]: Started controllers: joint_state_controller, scaled_pos_joint_traj_controller, speed_scaling_state_controller, force_torque_sensor_controller
最新发布
08-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值