关于江湖

“有人就有恩怨,有恩怨就有江湖,人就是江湖,你怎么退出!”


我,不读琼瑶,也不品金庸。曾经,江湖与我来讲,只是一个英雄辈出,危机四伏,侠肝义胆,铁骨柔情的虚拟世界。


直到某一天,隐约看到,一个风华正茂的年轻剑客,宝剑出鞘的那一刻,抬脚踏出了自己的江湖路。


直到某一天,忽然看清,江湖中有着更甚于想象中的凶险,更多的爱恨交织,情仇难解。


直到某一天,终于了解,原来那么多的江湖中人想着隐退江湖,开始直到现在。


直到某一天,开始想念,那段苍凉的岁月,那片灿烂的江湖,那些物是人非的是是非非,那些爱恨交织的恩怨情仇。


直到某一天,突然领悟,不管情愿也好,勉强也罢,我们一直都置身江湖,刀光剑影,鼓角争鸣,没离开过。


也罢,不如一生笑傲,半世逍遥。


基于html+python+Apriori 算法、SVD(奇异值分解)的电影推荐算法+源码+项目文档+算法解析+数据集,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 电影推荐算法:Apriori 算法、SVD(奇异值分解)推荐算法 电影、用户可视化 电影、用户管理 数据统计 SVD 推荐 根据电影打分进行推荐 使用 svd 模型计算用户对未评分的电影打分,返回前 n 个打分最高的电影作为推荐结果 n = 30 for now 使用相似电影进行推荐 根据用户最喜欢的前 K 部电影,分别计算这 K 部电影的相似电影 n 部,返回 K*n 部电影进行推荐 K = 10 and n = 5 for now 根据相似用户进行推荐 获取相似用户 K 个,分别取这 K 个用户的最喜爱电影 n 部,返回 K*n 部电影进行推荐 K = 10 and n = 5 for now Redis 使用 Redis 做页面访问次数统计 缓存相似电影 在使用相似电影推荐的方式时,每次请求大概需要 6.6s(需要遍历计算与所有电影的相似度)。 将相似电影存储至 redis 中(仅存储 movie_id,拿到 movie_id 后还是从 mysql 中获取电影详细信息), 时间缩短至:93ms。 十部电影,每部存 top 5 similar movie 登录了 1-6 user并使用了推荐系统,redis 中新增了 50 部电影的 similar movie,也就是说,系统只为 6 为用户计算了共 60 部电影的相似度,其中就有10 部重复电影。 热点电影重复度还是比较高的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

失足成万古风流人物

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值