import matplotlib.pyplot as plt
import tensorflow as tf
image_raw_data=tf.gfile.FastGFile("./path/to/picture/timg.jpg",'rb').read()
with tf.Session() as sess:
img_data=tf.image.decode_jpeg(image_raw_data)
print(img_data.eval())
plt.imshow(img_data.eval())
img_data=tf.image.convert_image_dtype(img_data,dtype=tf.float32)
resized=tf.image.resize_images(img_data,[300,300],method=0)
print(resized.get_shape())
plt.imshow(resized.eval())
encode_image=tf.image.encode_jpeg(img_data)
with tf.gfile.GFile('./path/to/picture/timg_output.jpg','wb') as f:
f.write(encode_image.eval())
croped=tf.image.resize_image_with_crop_or_pad(img_data,1000,1000)
plt.imshow(croped.eval())
plt.show()
central_croped=tf.image.central_crop(img_data,0.5)
plt.imshow(central_croped.eval())
plt.show()
flipped=tf.image.flip_up_down(img_data)
flipped=tf.image.random_flip_left_right(img_data)
transposed=tf.image.transpose_image(img_data)
flipped=tf.image.random_flip_left_right(img_data)
flipped=tf.image.random_flip_up_down(img_data)
adjusted=tf.image.adjust_brightness(img_data,-0.5)
adjusted=tf.image.random_brightness(img_data,0.5)
adjusted=tf.image.adjust_contrast(img_data,-5)
adjusted=tf.image.random_contrast(img_data,2,7)
adjusted=tf.image.adjust_hue(img_data,0.3)
adjusted=tf.image.random_hue(img_data,0.4)
adjusted=tf.image.adjust_saturation(img_data,5)
adjusted=tf.image.random_saturation(img_data,1,10)
adjusted=tf.image.per_image_standardization(img_data)
batched=tf.expand_dims(img_data,0)
boxes=tf.constant([[[0.05,0.05,0.7,0.9],[0.2,0.3,0.9,0.8]]])
result=tf.image.draw_bounding_boxes(batched,boxes)
plt.imshow(result[0].eval())
plt.show()