Spring事务管理只对出现运行期异常进行回滚

本文探讨了Spring框架中声明式事务管理的机制,并详细解释了检查型异常与非检查型异常的区别及其对事务回滚的影响。此外还介绍了如何通过配置来改变默认的事务回滚策略。
使用spring难免要用到spring的事务管理,要用事务管理又会很自然的选择声明式的事务管理,在spring的文档中说道,spring声明式事务管理默认对非检查型异常和运行时异常进行事务回滚,而对检查型异常则不进行回滚操作。
那么什么是检查型异常什么又是非检查型异常呢?
最简单的判断点有两个:
1.继承自runtimeexception或error的是非检查型异常,而继承自exception的则是检查型异常(当然,runtimeexception本身也是exception的子类)。

2.对非检查型类异常可以不用捕获,而检查型异常则必须用try语句块进行处理或者把异常交给上级方法处理总之就是必须写代码处理它。所以必须在service捕获异常,然后再次抛出,这样事务方才起效。

结论:

spring的事务管理环境下,使用unckecked exception可以极大地简化异常的处理,只需要在事务层声明可能抛出的异常(这里的异常可以是自定义的unckecked exception体系),在所有的中间层都只是需要简单throws即可,不需要捕捉和处理,直接到最高层,比如UI层再进行异常的捕捉和处理

在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。

Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这个例外是unchecked

如果遇到checked意外就不回滚。

如何改变默认规则:

1 让checked例外也回滚:在整个方法前加上 @Transactional(rollbackFor=Exception.class)

2 让unchecked例外不回滚: @Transactional(notRollbackFor=RunTimeException.class)

3 不需要事务管理的(只查询的)方法:@Transactional(propagation=Propagation.NOT_SUPPORTED)

 

注意: 如果异常被try{}catch{}了,事务就不回滚了,如果想让事务回滚必须再往外抛try{}catch{throw Exception}。


一个统一的异常层次结构对于提供服务抽象是必需的。 最重要的就是org.springframework.dao.DataAccessException以及其子类了。 需要强调的是Spring的异常机制重点在于应用编程模型。与SqlException和其他数据存取API不同的是: Spring的异常机制是为了让开发者使用最少, 最清晰的代码。DataAccessException和其他底层异常都是非检查性异常(unchecked exception)。 spring的原则之一就是基层异常就应该是非检查性异常. 原因如下: 
1. 基层异常通常来说是不可恢复的。 
2. 检查性异常将会降低异常层次结构的价值.如果底层异常是检查性的, 那么就需要在所有地方添加catch语句进行捕获。 
3.try/catch代码块冗长混乱, 而且不增加多少价值。 
使用检查异常理论上很好, 但是实际上好象并不如此。 
Hibernate3也将从检查性异常转为非检查性异常。

转载自:http://blog.youkuaiyun.com/abc19900828/article/details/39497631

【语音分离】基于平均谐波结构建模的无监督单声道音乐声源分离(Matlab代码实现)内容概要:本文介绍了基于平均谐波结构建模的无监督单声道音乐声源分离方法,并提供了相应的Matlab代码实现。该方法通过对音乐信号中的谐波结构进行建模,利用音源间的频率特征差异,实现对混合音频中不同乐器或人声成分的有效分离。整个过程无需标注数据,属于无监督学习范畴,适用于单通道录音场景下的语音与音乐分离任务。文中强调了算法的可复现性,并附带完整的仿真资源链接,便于读者学习与验证。; 适合人群:具备一定信号处理基础和Matlab编程能力的高校学生、科研人员及从事音频处理、语音识别等相关领域的工程师;尤其适合希望深入理解声源分离原理并进行算法仿真实践的研究者。; 使用场景及目标:①用于音乐音频中人声与伴奏的分离,或不同乐器之间的分离;②支持无监督条件下的语音处理研究,推动盲源分离技术的发展;③作为学术论文复现、课程项目开发或科研原型验证的技术参考。; 阅读建议:建议读者结合提供的Matlab代码与网盘资料同步运行调试,重点关注谐波建模与频谱分解的实现细节,同时可扩展学习盲源分离中的其他方法如独立成分分析(ICA)或非负矩阵分解(NMF),以加深对音频信号分离机制的理解。
内容概要:本文系统介绍了新能源汽车领域智能底盘技术的发展背景、演进历程、核心技术架构及创新形态。文章指出智能底盘作为智能汽车的核心执行层,通过线控化(X-By-Wire)和域控化实现驱动、制动、转向、悬架的精准主动控制,支撑高阶智能驾驶落地。技术发展历经机械、机电混合到智能三个阶段,当前以线控转向、线控制动、域控制器等为核心,并辅以传感器、车规级芯片、功能安全等配套技术。文中还重点探讨了“智能滑板底盘”这一创新形态,强调其高度集成化、模块化优势及其在成本、灵活性、空间利用等方面的潜力。最后通过“2025智能底盘先锋计划”的实车测试案例,展示了智能底盘在真实场景中的安全与性能表现,推动技术从研发走向市场验证。; 适合人群:汽车电子工程师、智能汽车研发人员、新能源汽车领域技术人员及对智能底盘技术感兴趣的从业者;具备一定汽车工程或控制系统基础知识的专业人士。; 使用场景及目标:①深入了解智能底盘的技术演进路径与系统架构;②掌握线控技术、域控制器、滑板底盘等关键技术原理与应用场景;③为智能汽车底盘研发、系统集成与技术创新提供理论支持与实践参考。; 阅读建议:建议结合实际车型和技术标准进行延伸学习,关注政策导向与行业测试动态,注重理论与实车验证相结合,全面理解智能底盘从技术构想到商业化落地的全过程。
【顶级EI复现】计及连锁故障传播路径的电力系统 N-k 多阶段双层优化及故障场景筛选模型(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI复现】计及连锁故障传播路径的电力系统 N-k 多阶段双层优化及故障场景筛选模型(Matlab代码实现)》的技术资源,重点围绕电力系统中连锁故障的传播路径展开研究,提出了一种N-k多阶段双层优化模型,并结合故障场景筛选方法,用于提升电力系统在复杂故障条件下的安全性与鲁棒性。该模型通过Matlab代码实现,具备较强的工程应用价值和学术参考意义,适用于电力系统风险评估、脆弱性分析及预防控制策略设计等场景。文中还列举了大量相关的科研技术支持方向,涵盖智能优化算法、机器学习、路径规划、信号处理、电力系统管理等多个领域,展示了广泛的仿真与复现能力。; 适合人群:具备电力系统、自动化、电气工程等相关背景,熟悉Matlab编程,有一定科研基础的研究生、高校教师及工程技术人员。; 使用场景及目标:①用于电力系统连锁故障建模与风险评估研究;②支撑高水平论文(如EI/SCI)的模型复现与算法验证;③为电网安全分析、故障传播防控提供优化决策工具;④结合YALMIP等工具进行数学规划求解,提升科研效率。; 阅读建议:建议读者结合提供的网盘资源,下载完整代码与案例进行实践操作,重点关注双层优化结构与场景筛选逻辑的设计思路,同时可参考文档中提及的其他复现案例拓展研究视野。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值