oc float数字去末无效零

最近遇到一些数字处理的问题,比如:整数末尾去零、float类型保留几位小数、四舍五入、去尾等等。
保留小数的时候经常遇到末尾有多余的零,比如:2.100,2.40000。末尾的零没必要显示,想找一些简便的方法,找个一个函数fmodf(<#float#>, <#float#>),求余。

NSString* str;
    if (fmodf(num, 1)==0) {
        str = [NSString stringWithFormat:@"%.0f",num];
    } else if (fmodf(num * 10, 1)==0) {
        str = [NSString stringWithFormat:@"%.1f",num];
    }else if (fmodf(num * 100, 1)==0){
        str = [NSString stringWithFormat:@"%.2f",num];
    }else
    {
        str = [NSString stringWithFormat:@"%.3f",num];
    }
    return str;

这里是最多保留三位小数,可以根据自己使用情况来写代码。也可写成循环 的样式。

请判断一下我这个buck稳压代码可以稳压吗?而且这个在oled屏上显示的实际电压准吗?#include "stm32f4xx.h" #include "delay.h" #include "oled.h" #include "stdio.h" #include "stdlib.h" #include "arm_math.h" #include "pid.h" #include "./adc/bsp_adc.h" #include "tim.h" #include "bsp_GeneralTim.h" float pid_out = 0; float Vout_actual = 0; extern __IO uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]; extern volatile uint8_t adc_data_ready ; extern volatile uint8_t tim_update_flag; extern volatile uint32_t last_adc_value ; float six = 0; int main(void) { Adc_Init(); TIM_Init(); OLED_Init(); TIM2_Init(); while(1) {} } void TIM2_IRQHandler(void) { if(TIM_GetITStatus(TIM2,TIM_IT_Update) == SET ) { char str[40]; sprintf(str,"Vout = %.3f",Vout_actual); OLED_ShowString(WORD_WIDTH*0,WORD_HIGH*0,(u8 *)str,WORD_SIZE); sprintf(str,"Duty = %.3f",pid_out); OLED_ShowString(WORD_WIDTH*0,WORD_HIGH*1,(u8 *)str,WORD_SIZE); sprintf(str,"test = %.3f",six); OLED_ShowString(WORD_WIDTH*0,WORD_HIGH*2,(u8 *)str,WORD_SIZE); OLED_Refresh_Gram(); sprintf(str,"TIM1->CCR2 = %d",TIM1->CCR2); OLED_ShowString(WORD_WIDTH*0,WORD_HIGH*3,(u8 *)str,WORD_SIZE); OLED_Refresh_Gram(); } TIM_ClearITPendingBit(TIM2, TIM_IT_Update); } //// 输入20V→输出15V:kp=0.3-0.6, ki=0.05-0.2, kd=0.01-0.05 ////输入35V→输出20V:kp=0.2-0.4, ki=0.02-0.1, kd=0.005-0.02 // // // // pid.kp = 0.5f; // 从较小值开始调试 // pid.ki = 0.1f; // pid.kd = 0.01f; // pid.max_output = 100.0f; // pid.min_output = 0.0f; // pid.integral = 0; // pid.prev_error = 0; #include "stm32f4xx_it.h" #include "oled.h" #include <math.h> #include "./adc/bsp_adc.h" #include "pid.h" #include "bsp_GeneralTim.h" float Taget=12; extern uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]; extern float voltage1; extern float pid_out; extern float Vout_actual; extern uint16_t TIM1_Impluse;//高级定时器占空比 volatile uint8_t adc_data_ready = 0; volatile uint8_t tim_update_flag=0 ; volatile uint32_t last_adc_value = 0; extern volatile uint32_t time; extern float six; // 在DMA中断中仅设置标志 void DMA2_Stream0_IRQHandler(void) { if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0)) { adc_data_ready = 1; // 仅设置标志 DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0); } } void TIM1_UP_TIM10_IRQHandler(void) { if(TIM_GetITStatus(TIM1, TIM_IT_Update)) { if(adc_data_ready) { // 修正ADC转换公式 Vout_actual = ADC_ConvertedValue[0] * 3.3f / 4096.0f; adc_data_ready = 0; // PID计算 pid_out = pid_control(2.6, 1.5, 0.1, 12, Vout_actual); TIM1_Impluse=pid_out*84; // 限幅保护 if(pid_out > TIM1->ARR) TIM1_Impluse = TIM1->ARR; // 更新PWM TIM1->CCR2 = TIM1_Impluse; six = 1; // 存储实际设置的PWM值 } TIM_ClearITPendingBit(TIM1, TIM_IT_Update); } } void NMI_Handler(void) { } void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) {} } void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) {} } void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) {} } void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) {} } void DebugMon_Handler(void) { } void SVC_Handler(void) { } void PendSV_Handler(void) { } void SysTick_Handler(void) { } #include "tim.h" uint16_t TIM1_Impluse = 4200;//预设占空比 float z = 0; const uint32_t spwm[400] = { 4200,4265,4331,4397,4463,4529,4595,4660,4726,4791,4857,4922,4987,5051,5116,5180, 5244,5308,5371,5434,5497,5560,5622,5684,5746,5807,5868,5928,5988,6047,6106,6165, 6223,6280,6337,6394,6450,6505,6560,6615,6668,6721,6774,6826,6877,6927,6977,7026, 7075,7122,7169,7216,7261,7306,7350,7393,7436,7477,7518,7558,7597,7636,7673,7710, 7746,7781,7815,7848,7880,7911,7942,7971,8000,8027,8054,8080,8105,8128,8151,8173, 8194,8214,8233,8251,8268,8283,8298,8312,8325,8337,8348,8358,8366,8374,8381,8387, 8391,8395,8397,8399,8400,8399,8397,8395,8391,8387,8381,8374,8366,8358,8348,8337, 8325,8312,8298,8283,8268,8251,8233,8214,8194,8173,8151,8128,8105,8080,8054,8027, 8000,7971,7942,7911,7880,7848,7815,7781,7746,7710,7673,7636,7597,7558,7518,7477, 7436,7393,7350,7306,7261,7216,7169,7122,7075,7026,6977,6927,6877,6826,6774,6721, 6668,6615,6560,6505,6450,6394,6337,6280,6223,6165,6106,6047,5988,5928,5868,5807, 5746,5684,5622,5560,5497,5434,5371,5308,5244,5180,5116,5051,4987,4922,4857,4791, 4726,4660,4595,4529,4463,4397,4331,4265,4200,4134,4068,4002,3936,3870,3804,3739, 3673,3608,3542,3477,3412,3348,3283,3219,3155,3091,3028,2965,2902,2839,2777,2715, 2653,2592,2531,2471,2411,2352,2293,2234,2176,2119,2062,2005,1949,1894,1839,1784, 1731,1678,1625,1573,1522,1472,1422,1373,1324,1277,1230,1183,1138,1093,1049,1006, 963,922,881,841,802,763,726,689,653,618,584,551,519,488,457,428, 399,372,345,319,294,271,248,226,205,185,166,148,131,116,101,87, 74,62,51,41,33,25,18,12,8,4,2,0,0,0,2,4, 8,12,18,25,33,41,51,62,74,87,101,116,131,148,166,185, 205,226,248,271,294,319,345,372,399,428,457,488,519,551,584,618, 653,689,726,763,802,841,881,922,963,1006,1049,1093,1138,1183,1230,1277, 1324,1373,1422,1472,1522,1573,1625,1678,1731,1784,1839,1894,1949,2005,2062,2119, 2176,2234,2293,2352,2411,2471,2531,2592,2653,2715,2777,2839,2902,2965,3028,3091, 3155,3219,3283,3348,3412,3477,3542,3608,3673,3739,3804,3870,3936,4002,4068,4134 }; //TIM1的GPIO static void TIM_GPIO_Config(void) { GPIO_InitTypeDef TIM_GPIO_InitStruct; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB, ENABLE);//开钟 /*-----------------------------PA8,PA7------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource8,GPIO_AF_TIM1);//引脚复用 主 PA8,PA7 GPIO_PinAFConfig(GPIOA,GPIO_PinSource7,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_8; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_7; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ /*-----------------------------PA9,PB14------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource14,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_14; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ /*-----------------------------PA10,PB1------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource1,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ // TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AN; //模拟模式 pa6死刹 // TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6; //引脚 // TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 // TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 // TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; //浮空 // GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 } //TIM1 static void TIM_A1_Mode_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStruct; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);///使能时钟 //168MHZ->20kHZ 主频/(计数+1)*(预分频系数+1) //168MHz/8 * 1050 = 20khz /*-----------------------------基本结构体------------------------------------*/ TIM_TimeBaseInitStructure.TIM_Period = (8400-1); //自动重装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=(1-1); //定时器分频 TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; //1分频 TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0; //不需要重复计数 TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure); //初始化TIM /*-----------------------------基本结构体------------------------------------*/ /*-----------------------------输出比较------------------------------------*/ TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1; //pwm模式选择 TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable; ///使能输出通道 TIM_OCInitStruct.TIM_OutputNState = TIM_OutputNState_Enable; //使能互补通道 TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; //预设占空比 TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High; //PWM1和2中的CH和CCR之间值的大小(多用pwm1的模式1) TIM_OCInitStruct.TIM_OCNPolarity = TIM_OCNPolarity_High; //当使用了刹车功能时,两路PWM1和2都会被强制禁止,进而输出我们配置的的空闲先状态 TIM_OCInitStruct.TIM_OCIdleState = TIM_OCIdleState_Set; //刹车时输出通道的状态 Set = high TIM_OCInitStruct.TIM_OCNIdleState = TIM_OCNIdleState_Reset; //刹车时互补通道的状态 Reset = low TIM_OC1Init(TIM1, &TIM_OCInitStruct); //使能通道1 TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable); /* 使能通道1重载 */ TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC2Init(TIM1, &TIM_OCInitStruct); TIM_OC2PreloadConfig(TIM1,TIM_OCPreload_Enable); TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC3Init(TIM1, &TIM_OCInitStruct); TIM_OC3PreloadConfig(TIM1,TIM_OCPreload_Enable); /*-----------------------------输出比较------------------------------------*/ /*-----------------------------死区刹车------------------------------------*/ TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable; //开启死区 TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable; //开启1空闲状态 TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1; //不同的锁定级别 (看BDTR寄存器) TIM_BDTRInitStructure.TIM_DeadTime = 20; //刹车时间,(看BDTR寄存器中的DTG[7:0]) //11转换成二进制为0000 1011 死区时间看[7;5]位,此处为000 TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable; //允许刹车 //BKIN 测到低电平 比较信号禁止 TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High; //高极性 TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable; //自动输出使能(刹车输入无效) TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); //写入 /*-----------------------------死区刹车------------------------------------*/ TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE); //允许定时器更新中断 | TIM_IT_Trigger TIM_Cmd(TIM1,ENABLE); //使能定时器 TIM_CtrlPWMOutputs(TIM1, ENABLE); //主动输出使能 } static void TIM_A1_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; /*-----------------------------中断------------------------------------*/ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //分组 NVIC_InitStructure.NVIC_IRQChannel=TIM1_UP_TIM10_IRQn; //定时器1中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0; NVIC_InitStructure.NVIC_IRQChannelSubPriority=0; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; //使能中断 NVIC_Init(&NVIC_InitStructure); //写入 /*-----------------------------中断------------------------------------*/ } void TIM_Init(void) { TIM_A1_NVIC_Config(); TIM_GPIO_Config(); TIM_A1_Mode_Config(); } #include "./adc/bsp_adc.h" #include "bsp_GeneralTim.h" #include "stm32f4xx_adc.h" __IO uint16_t ADC_ConvertedValue[1]={0}; volatile uint8_t current_buffer = 0; extern volatile uint32_t time; static void ADC_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; /*=====================通道1======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK1,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT1, &GPIO_InitStructure); } void ADC_DMA_Config(void) { DMA_InitTypeDef DMA_InitStructure; // 1. 使能 DMA 时钟 RCC_AHB1PeriphClockCmd(ADC_DMA_CLK, ENABLE); // 2. 配置 DMA 参数 DMA_InitStructure.DMA_Channel = ADC_DMA_CHANNEL; // DMA 通道 0 DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)ADC_ConvertedValue; // 目标地址:内存缓冲区 DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR; // 修正外设地址 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; // 外设到内存 DMA_InitStructure.DMA_BufferSize = 1; // 缓冲区大小 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 外设地址不递增 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable; // 单通道禁用地址递增 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; // 外设数据大小:半字(16位) DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; // 内存数据大小:半字(16位) DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; // 循环模式 DMA_InitStructure.DMA_Priority = DMA_Priority_High; // 高优先级 DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; // 禁用 FIFO 模式 DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; // FIFO 阈值 DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; // 内存突发传输:单次 DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; // 外设突发传输:单次 // 3. 初始化 DMA DMA_Init(ADC_DMA_STREAM, &DMA_InitStructure); // 4. 使能 DMA 中断(传输完成、传输错误) DMA_ITConfig(ADC_DMA_STREAM, DMA_IT_TC | DMA_IT_TE | DMA_IT_HT, ENABLE); // 5. 使能 DMA 流 DMA_Cmd(ADC_DMA_STREAM, ENABLE); } void ADC_Config(void) { ADC_InitTypeDef ADC_InitStructure; ADC_CommonInitTypeDef ADC_CommonInitStructure; // 1. 使能 ADC 时钟 RCC_APB2PeriphClockCmd(ADC_CLK, ENABLE); // 2. 配置 ADC 通用参数 ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; // 独立模式 ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div4; // ADC 时钟分频:PCLK2/4 ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1 ; // DMA 访问模式 ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; // 采样延迟 ADC_CommonInit(&ADC_CommonInitStructure); // 3. 配置 ADC 参数 ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; // 12位分辨率 ADC_InitStructure.ADC_ScanConvMode = DISABLE; // 扫描模式使能 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; // 连续转换模式 ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; // 软件触发 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; // 任意值 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; // 数据右对齐 ADC_InitStructure.ADC_NbrOfConversion = 1 ; // 转换通道数 ADC_Init(ADC_, &ADC_InitStructure); // 4. 配置 ADC 通道(通道4,PA4) ADC_RegularChannelConfig(ADC_, ADC_Channel_4, 1, ADC_SampleTime_84Cycles); // 5. 使能 ADC DMA ADC_DMACmd(ADC_, ENABLE); // 6. 使能 ADC ADC_Cmd(ADC_, ENABLE); // 7. 启动 ADC 转换 ADC_SoftwareStartConv(ADC_); } static void ADC_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } void Adc_Init(void) { ADC_GPIO_Config(); ADC_DMA_Config(); ADC_Config(); ADC_NVIC_Config(); } //float ADC_ReadVoltage(void) // { // // static uint8_t initialized = 0; // if(!initialized) // { // Adc_Init(); // initialized = 1; // } // // // // 直接读取全局数组 // return ADC_ConvertedValue[0] * 3.3f /4096; //} #ifndef __BSP_ADC_H #define __BSP_ADC_H #include "stm32f4xx.h" #define RHEOSTAT_NOFCHANEL 1 /*=====================通道1 IO======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT1 GPIOA #define ADC_GPIO_PIN1 GPIO_Pin_4 #define ADC_GPIO_CLK1 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL1 ADC_Channel_4 // ADC 序号宏定义 #define ADC_ ADC1 #define ADC_CLK RCC_APB2Periph_ADC1 // ADC DR寄存器宏定义,ADC转换后的数字值则存放在这里 #define RHEOSTAT_ADC_DR_ADDR ((u32)ADC1+0x4c) // ADC DMA 通道宏定义,这里我们使用DMA传输 // DMA 配置 #define ADC_DMA_CLK RCC_AHB1Periph_DMA2 #define ADC_DMA_CHANNEL DMA_Channel_0 #define ADC_DMA_STREAM DMA2_Stream0 void Adc_Init(void); //float ADC_ReadVoltage(void); #endif /* __BSP_ADC_H */ #include "pid.h" float kp, ki, kd; // PID参数 float last_error = 0,last_error_2 = 0 , last_output, setpoint, input, output; float pid_control(float KP , float KI , float KD , float Set_Point , float Now_Point) { kp = KP; ki = KI; kd = KD; setpoint = Set_Point; input = Now_Point; float error = setpoint - input; float delta_error = error - last_error; output += kp*delta_error + ki*error + kd*(error-2*last_error+last_error_2); last_error_2 = last_error; last_error = error; last_output = output; // 输出限幅 (0-100%) if(output > 100.0f) output = 100.0f; else if(output < 0.0f) output = 0.0f; return output; } //float pid_control(PID_Controller* pid, float setpoint, float input) { // // 计算当前误差 // float error = setpoint - input; // // // 比例项 // float p_term = pid->kp * error; // // // 积分项(带抗饱和) // pid->integral += error; // // // 积分限幅 // if(pid->integral > pid->max_output) // pid->integral = pid->max_output; // else if(pid->integral < pid->min_output) // pid->integral = pid->min_output; // // float i_term = pid->ki * pid->integral; // // // 微分项(标准实现) // float d_term = pid->kd * (error - pid->prev_error); // // // PID输出 // float output = p_term + i_term + d_term; // // // 输出限幅 // if(output > pid->max_output) output = pid->max_output; // else if(output < pid->min_output) output = pid->min_output; // // // 更新误差历史 // pid->prev_error = error; // // return output; //} #include "bsp_GeneralTim.h" void TIM2_Init(void) { NVIC_InitTypeDef NVIC_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); NVIC_InitStructure.NVIC_IRQChannel=TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1; NVIC_InitStructure.NVIC_IRQChannelSubPriority=0x01; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; NVIC_Init(&NVIC_InitStructure); RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE); TIM_TimeBaseInitStructure.TIM_Period = (168000-1); TIM_TimeBaseInitStructure.TIM_Prescaler= (1000-1); TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0; TIM_TimeBaseInit(TIM2,&TIM_TimeBaseInitStructure); TIM_ClearFlag(TIM2,TIM_FLAG_Update); TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); TIM_ARRPreloadConfig(TIM2,ENABLE); TIM_Cmd(TIM2,ENABLE); }
07-13
为什么以下这个buck稳压电路的占空比总是会变到100% ,而不稳定在我想要的·占空比中呢,问题应该出在pid函数上#include “stm32f4xx.h” #include “delay.h” #include “oled.h” #include “stdio.h” #include “stdlib.h” #include “arm_math.h” #include “pid.h” #include “./adc/bsp_adc.h” #include “tim.h” float pid_out; volatile uint8_t adc_data_ready = 0; volatile uint8_t tim_update_flag ; volatile uint32_t last_adc_value = 0; float Vout_actual = 0.0f; float Target = 12.0f; // 目标输出电压 float voltage1; extern __IO uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]; extern uint16_t TIM1_Impluse ;//高级定时器占空比 int main(void) { OLED_Init(); arm_sin_f32(23); // Adc_Init(); TIM_Init(); while(1) { if (adc_data_ready) { // 计算电压 voltage1 = last_adc_value * 3.3f*0.000244140625; Vout_actual = voltage1; adc_data_ready = 0; } if (tim_update_flag) { pid_out = pid_control(0.8f, 0.05f, 0.02f, Target, Vout_actual); // 安全更新PWM (限制在0-8400) TIM1_Impluse = pid_out * 84; // 0-100% -> 0-8400 TIM1->CCR1 = TIM1_Impluse; // // 重置标志 tim_update_flag = 0; } // a=pid_control (5 , 0.25, 0 ,Target ,Vout_actual); // ADC_Read(); // float six = 6; // char str[40]; // sprintf(str,“Vout_actual = %.3f”,Vout_actual); // OLED_ShowString(WORD_WIDTH0,WORD_HIGH1,(u8 *)str,WORD_SIZE); // OLED_Refresh_Gram(); // delay_us(100); static char display_buffer[2][40]; snprintf(display_buffer[0], 40, “Vout: %.2fV”, Vout_actual); delay_ms(50); snprintf(display_buffer[1], 40, “Duty: %d”, TIM1->CCR1); OLED_ShowString(0, 1, (u8*)display_buffer[0], 12); OLED_ShowString(0, 18, (u8*)display_buffer[1], 12); OLED_Refresh_Gram(); } } #include “stm32f4xx_it.h” #include “oled.h” #include <math.h> #include “./adc/bsp_adc.h” #include “pid.h” extern uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]; extern float voltage1; extern float pid_out; extern float Vout_actual; extern uint16_t TIM1_Impluse ;//高级定时器占空比 extern volatile uint8_t adc_data_ready ; extern volatile uint8_t tim_update_flag ; extern volatile uint32_t last_adc_value; void TIM1_UP_TIM10_IRQHandler(void) { if(TIM_GetITStatus(TIM1,TIM_IT_Update) == SET) { // Vout_actual = voltage1; // pid_out = pid_control (5 , 0.25, 0 ,Vout_set ,Vout_actual); // TIM1->CCR1 = pid_out; // tim_update_flag = 1; // 设置标志,表示发生了一次更新中断 TIM_ClearITPendingBit(TIM1, TIM_IT_Update); } } void DMA2_Stream0_IRQHandler(void) { // 处理传输完成中断 if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0)) { DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0); last_adc_value = ADC_ConvertedValue[0]; adc_data_ready = 1; } // 处理半传输中断 if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_HTIF0)) { DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_HTIF0); } // 处理传输错误中断 if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TEIF0)) { DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TEIF0); // 这里可以添加错误处理代码 } } void NMI_Handler(void) { } void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) {} } void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs / while (1) {} } void BusFault_Handler(void) { / Go to infinite loop when Bus Fault exception occurs / while (1) {} } void UsageFault_Handler(void) { / Go to infinite loop when Usage Fault exception occurs */ while (1) {} } void DebugMon_Handler(void) { } void SVC_Handler(void) { } void PendSV_Handler(void) { } void SysTick_Handler(void) { } #include “tim.h” uint16_t TIM1_Impluse = 4200;//预设占空比 float z = 0; const uint32_t spwm[400] = { 4200,4265,4331,4397,4463,4529,4595,4660,4726,4791,4857,4922,4987,5051,5116,5180, 5244,5308,5371,5434,5497,5560,5622,5684,5746,5807,5868,5928,5988,6047,6106,6165, 6223,6280,6337,6394,6450,6505,6560,6615,6668,6721,6774,6826,6877,6927,6977,7026, 7075,7122,7169,7216,7261,7306,7350,7393,7436,7477,7518,7558,7597,7636,7673,7710, 7746,7781,7815,7848,7880,7911,7942,7971,8000,8027,8054,8080,8105,8128,8151,8173, 8194,8214,8233,8251,8268,8283,8298,8312,8325,8337,8348,8358,8366,8374,8381,8387, 8391,8395,8397,8399,8400,8399,8397,8395,8391,8387,8381,8374,8366,8358,8348,8337, 8325,8312,8298,8283,8268,8251,8233,8214,8194,8173,8151,8128,8105,8080,8054,8027, 8000,7971,7942,7911,7880,7848,7815,7781,7746,7710,7673,7636,7597,7558,7518,7477, 7436,7393,7350,7306,7261,7216,7169,7122,7075,7026,6977,6927,6877,6826,6774,6721, 6668,6615,6560,6505,6450,6394,6337,6280,6223,6165,6106,6047,5988,5928,5868,5807, 5746,5684,5622,5560,5497,5434,5371,5308,5244,5180,5116,5051,4987,4922,4857,4791, 4726,4660,4595,4529,4463,4397,4331,4265,4200,4134,4068,4002,3936,3870,3804,3739, 3673,3608,3542,3477,3412,3348,3283,3219,3155,3091,3028,2965,2902,2839,2777,2715, 2653,2592,2531,2471,2411,2352,2293,2234,2176,2119,2062,2005,1949,1894,1839,1784, 1731,1678,1625,1573,1522,1472,1422,1373,1324,1277,1230,1183,1138,1093,1049,1006, 963,922,881,841,802,763,726,689,653,618,584,551,519,488,457,428, 399,372,345,319,294,271,248,226,205,185,166,148,131,116,101,87, 74,62,51,41,33,25,18,12,8,4,2,0,0,0,2,4, 8,12,18,25,33,41,51,62,74,87,101,116,131,148,166,185, 205,226,248,271,294,319,345,372,399,428,457,488,519,551,584,618, 653,689,726,763,802,841,881,922,963,1006,1049,1093,1138,1183,1230,1277, 1324,1373,1422,1472,1522,1573,1625,1678,1731,1784,1839,1894,1949,2005,2062,2119, 2176,2234,2293,2352,2411,2471,2531,2592,2653,2715,2777,2839,2902,2965,3028,3091, 3155,3219,3283,3348,3412,3477,3542,3608,3673,3739,3804,3870,3936,4002,4068,4134 }; //TIM1的GPIO static void TIM_GPIO_Config(void) { GPIO_InitTypeDef TIM_GPIO_InitStruct; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB, ENABLE);//开钟 /-----------------------------PA8,PA7------------------------------------/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource8,GPIO_AF_TIM1);//引脚复用 主 PA8,PA7 GPIO_PinAFConfig(GPIOA,GPIO_PinSource7,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_8; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_7; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); /-----------------------------------------------------------------------/ /-----------------------------PA9,PB14------------------------------------/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource14,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_14; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /-----------------------------------------------------------------------/ /-----------------------------PA10,PB1------------------------------------/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource1,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /-----------------------------------------------------------------------/ // TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AN; //模拟模式 pa6死刹 // TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6; //引脚 // TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 // TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 // TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; //浮空 // GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 } //TIM1 static void TIM_A1_Mode_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStruct; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);///使能时钟 //168MHZ->20kHZ 主频/(计数+1)*(预分频系数+1) //168MHz/8 * 1050 = 20khz /-----------------------------基本结构体------------------------------------/ TIM_TimeBaseInitStructure.TIM_Period = (8400-1); //自动重装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=(1-1); //定时器分频 TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; //1分频 TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0; //不需要重复计数 TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure); //初始化TIM /-----------------------------基本结构体------------------------------------/ /-----------------------------输出比较------------------------------------/ TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1; //pwm模式选择 TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable; ///使能输出通道 TIM_OCInitStruct.TIM_OutputNState = TIM_OutputNState_Enable; //使能互补通道 TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; //预设占空比 TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High; //PWM1和2中的CH和CCR之间值的大小(多用pwm1的模式1) TIM_OCInitStruct.TIM_OCNPolarity = TIM_OCNPolarity_High; //当使用了刹车功能时,两路PWM1和2都会被强制禁止,进而输出我们配置的的空闲先状态 TIM_OCInitStruct.TIM_OCIdleState = TIM_OCIdleState_Set; //刹车时输出通道的状态 Set = high TIM_OCInitStruct.TIM_OCNIdleState = TIM_OCNIdleState_Reset; //刹车时互补通道的状态 Reset = low TIM_OC1Init(TIM1, &TIM_OCInitStruct); //使能通道1 TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable); /* 使能通道1重载 */ TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC2Init(TIM1, &TIM_OCInitStruct); TIM_OC2PreloadConfig(TIM1,TIM_OCPreload_Enable); TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC3Init(TIM1, &TIM_OCInitStruct); TIM_OC3PreloadConfig(TIM1,TIM_OCPreload_Enable); /-----------------------------输出比较------------------------------------/ /-----------------------------死区刹车------------------------------------/ TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable; //开启死区 TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable; //开启1空闲状态 TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1; //不同的锁定级别 (看BDTR寄存器) TIM_BDTRInitStructure.TIM_DeadTime = 20; //刹车时间,(看BDTR寄存器中的DTG[7:0]) //11转换成二进制为0000 1011 死区时间看[7;5]位,此处为000 TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable; //允许刹车 //BKIN 测到低电平 比较信号禁止 TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High; //高极性 TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable; //自动输出使能(刹车输入无效) TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); //写入 /-----------------------------死区刹车------------------------------------/ TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE); //允许定时器更新中断 | TIM_IT_Trigger TIM_Cmd(TIM1,ENABLE); //使能定时器 TIM_CtrlPWMOutputs(TIM1, ENABLE); //主动输出使能 } static void TIM_A1_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; /-----------------------------中断------------------------------------/ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //分组 NVIC_InitStructure.NVIC_IRQChannel=TIM1_UP_TIM10_IRQn; //定时器1中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2; NVIC_InitStructure.NVIC_IRQChannelSubPriority=0; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; //使能中断 NVIC_Init(&NVIC_InitStructure); //写入 /-----------------------------中断------------------------------------/ } void TIM_Init(void) { TIM_A1_NVIC_Config(); TIM_GPIO_Config(); TIM_A1_Mode_Config(); } #include “./adc/bsp_adc.h” __IO uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]={0}; static void ADC_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; /=通道1==/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK1,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT1, &GPIO_InitStructure); } void ADC_DMA_Config(void) { DMA_InitTypeDef DMA_InitStructure; // 1. 使能 DMA 时钟 RCC_AHB1PeriphClockCmd(ADC_DMA_CLK, ENABLE); // 2. 配置 DMA 参数 DMA_InitStructure.DMA_Channel = ADC_DMA_CHANNEL; // DMA 通道 0 DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)ADC_ConvertedValue ; // ADC 数据寄存器地址 DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)ADC_ConvertedValue; // 内存缓冲区地址 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; // 外设到内存 DMA_InitStructure.DMA_BufferSize = RHEOSTAT_NOFCHANEL; // 缓冲区大小 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 外设地址不递增 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; // 内存地址递增 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; // 外设数据大小:半字(16位) DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; // 内存数据大小:半字(16位) DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; // 循环模式 DMA_InitStructure.DMA_Priority = DMA_Priority_High; // 高优先级 DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; // 禁用 FIFO 模式 DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; // FIFO 阈值 DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; // 内存突发传输:单次 DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; // 外设突发传输:单次 // 3. 初始化 DMA DMA_Init(ADC_DMA_STREAM, &DMA_InitStructure); // 4. 使能 DMA 中断(传输完成、传输错误) DMA_ITConfig(ADC_DMA_STREAM, DMA_IT_TC | DMA_IT_TE | DMA_IT_HT, ENABLE); // 5. 使能 DMA 流 DMA_Cmd(ADC_DMA_STREAM, ENABLE); } void ADC_Config(void) { ADC_InitTypeDef ADC_InitStructure; ADC_CommonInitTypeDef ADC_CommonInitStructure; // 1. 使能 ADC 时钟 RCC_APB2PeriphClockCmd(ADC_CLK, ENABLE); // 2. 配置 ADC 通用参数 ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; // 独立模式 ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div4; // ADC 时钟分频:PCLK2/4 ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; // DMA 访问模式 ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; // 采样延迟 ADC_CommonInit(&ADC_CommonInitStructure); // 3. 配置 ADC 参数 ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; // 12位分辨率 ADC_InitStructure.ADC_ScanConvMode = ENABLE; // 扫描模式使能 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; // 连续转换模式 ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; // 无外部触发 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; // 外部触发源 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; // 数据右对齐 ADC_InitStructure.ADC_NbrOfConversion = RHEOSTAT_NOFCHANEL ; // 转换通道数 ADC_Init(ADC_, &ADC_InitStructure); // 4. 配置 ADC 通道(通道4,PA4) ADC_RegularChannelConfig(ADC_, ADC_Channel_4, 1, ADC_SampleTime_84Cycles); // 5. 使能 ADC DMA ADC_DMACmd(ADC_, ENABLE); // 6. 使能 ADC ADC_Cmd(ADC_, ENABLE); // 7. 启动 ADC 转换 ADC_SoftwareStartConv(ADC_); } static void ADC_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } void Adc_Init(void) { ADC_GPIO_Config(); ADC_DMA_Config(); ADC_Config(); ADC_NVIC_Config(); } #ifndef __BSP_ADC_H #define __BSP_ADC_H #include “stm32f4xx.h” #define RHEOSTAT_NOFCHANEL 1 /=通道1 IO==/ // ADC IO宏定义 #define ADC_GPIO_PORT1 GPIOA #define ADC_GPIO_PIN1 GPIO_Pin_4 #define ADC_GPIO_CLK1 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL1 ADC_Channel_4 ///=====================通道2 IO ======================/ //// ADC IO宏定义 //#define ADC_GPIO_PORT2 GPIOA //#define ADC_GPIO_PIN2 GPIO_Pin_2 //#define ADC_GPIO_CLK2 RCC_AHB1Periph_GPIOA //#define ADC_CHANNEL2 ADC_Channel_2 ///=====================通道3 IO ======================/ //// ADC IO宏定义 //#define ADC_GPIO_PORT3 GPIOA //#define ADC_GPIO_PIN3 GPIO_Pin_3 //#define ADC_GPIO_CLK3 RCC_AHB1Periph_GPIOA //#define ADC_CHANNEL3 ADC_Channel_3 // ADC 序号宏定义 #define ADC_ ADC1 #define ADC_CLK RCC_APB2Periph_ADC1 // ADC DR寄存器宏定义,ADC转换后的数字值则存放在这里 #define RHEOSTAT_ADC_DR_ADDR ((u32)ADC1+0x4c) // ADC DMA 通道宏定义,这里我们使用DMA传输 // DMA 配置 #define ADC_DMA_CLK RCC_AHB1Periph_DMA2 #define ADC_DMA_CHANNEL DMA_Channel_0 #define ADC_DMA_STREAM DMA2_Stream0 void Adc_Init(void); #endif /* __BSP_ADC_H */ #include “pid.h” float kp, ki, kd; // PID参数 float last_error = 0,last_error_2 = 0 , last_output, setpoint, input, output; float pid_control(float KP , float KI , float KD , float Set_Point , float Now_Point) { kp = KP; ki = KI; kd = KD; setpoint = Set_Point; input = Now_Point; float error = setpoint - input; float delta_error = error - last_error; output += kp*delta_error + ki*error + kd*(error-2*last_error+last_error_2); last_error_2 = last_error; last_error = error; last_output = output; if(output >= 100.0f ) output = 100.0f; return output; }
07-12
为什么下面这个buck稳压代码连最基本的稳压功能都没有?#include "stm32f4xx.h" #include "delay.h" #include "oled.h" #include "stdio.h" #include "stdlib.h" #include "arm_math.h" #include "pid.h" #include "./adc/bsp_adc.h" #include "tim.h" #include "bsp_GeneralTim.h" float pid_out = 0; float Vout_actual = 0; //extern __IO uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]; extern volatile uint8_t adc_data_ready ; extern volatile uint8_t tim_update_flag; extern volatile uint32_t last_adc_value; float six = 0; int main(void) { Adc_Init(); TIM_Init(); OLED_Init(); TIM2_Init(); while(1) {} } void TIM2_IRQHandler(void) { if(TIM_GetITStatus(TIM2,TIM_IT_Update) == SET ) { char str[40]; sprintf(str,"Vout = %.3f",Vout_actual); OLED_ShowString(WORD_WIDTH*0,WORD_HIGH*0,(u8 *)str,WORD_SIZE); sprintf(str,"Duty = %.3f",pid_out); OLED_ShowString(WORD_WIDTH*0,WORD_HIGH*1,(u8 *)str,WORD_SIZE); sprintf(str,"test = %.3f",six); OLED_ShowString(WORD_WIDTH*0,WORD_HIGH*2,(u8 *)str,WORD_SIZE); OLED_Refresh_Gram(); sprintf(str,"TIM1->CCR2 = %d",TIM1->CCR2); OLED_ShowString(WORD_WIDTH*0,WORD_HIGH*3,(u8 *)str,WORD_SIZE); OLED_Refresh_Gram(); } TIM_ClearITPendingBit(TIM2, TIM_IT_Update); } #include "stm32f4xx_it.h" #include "oled.h" #include <math.h> #include "./adc/bsp_adc.h" #include "pid.h" #include "bsp_GeneralTim.h" float Taget=12; extern uint16_t ADC_ConvertedValue[1]; extern float voltage1; extern float pid_out; extern float Vout_actual; extern uint16_t TIM1_Impluse;//高级定时器占空比 volatile uint8_t adc_data_ready = 0; volatile uint8_t tim_update_flag=0 ; volatile uint32_t last_adc_value = 0; extern volatile uint32_t time; extern float six; // 在DMA中断中仅设置标志 void DMA2_Stream0_IRQHandler(void) { if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0)) { adc_data_ready = 1; // 仅设置标志 DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0); } } void TIM1_UP_TIM10_IRQHandler(void) { if(TIM_GetITStatus(TIM1, TIM_IT_Update)) { if(adc_data_ready) { // 修正ADC转换公式 Vout_actual = ADC_ConvertedValue[0] * 3.3f / 4096.0f; adc_data_ready = 0; // // PID计算 pid_out = pid_control(2.6, 1.5, 0.1, 12, Vout_actual); TIM1_Impluse=pid_out*84; // 限幅保护 if(pid_out > TIM1->ARR) TIM1_Impluse = TIM1->ARR; // 更新PWM TIM1->CCR2 = TIM1_Impluse; six = 1; // 存储实际设置的PWM值 } TIM_ClearITPendingBit(TIM1, TIM_IT_Update); } } void NMI_Handler(void) { } void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) {} } void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) {} } void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) {} } void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) {} } void DebugMon_Handler(void) { } void SVC_Handler(void) { } void PendSV_Handler(void) { } void SysTick_Handler(void) { } #include "tim.h" uint16_t TIM1_Impluse = 4200;//预设占空比 float z = 0; const uint32_t spwm[400] = { 4200,4265,4331,4397,4463,4529,4595,4660,4726,4791,4857,4922,4987,5051,5116,5180, 5244,5308,5371,5434,5497,5560,5622,5684,5746,5807,5868,5928,5988,6047,6106,6165, 6223,6280,6337,6394,6450,6505,6560,6615,6668,6721,6774,6826,6877,6927,6977,7026, 7075,7122,7169,7216,7261,7306,7350,7393,7436,7477,7518,7558,7597,7636,7673,7710, 7746,7781,7815,7848,7880,7911,7942,7971,8000,8027,8054,8080,8105,8128,8151,8173, 8194,8214,8233,8251,8268,8283,8298,8312,8325,8337,8348,8358,8366,8374,8381,8387, 8391,8395,8397,8399,8400,8399,8397,8395,8391,8387,8381,8374,8366,8358,8348,8337, 8325,8312,8298,8283,8268,8251,8233,8214,8194,8173,8151,8128,8105,8080,8054,8027, 8000,7971,7942,7911,7880,7848,7815,7781,7746,7710,7673,7636,7597,7558,7518,7477, 7436,7393,7350,7306,7261,7216,7169,7122,7075,7026,6977,6927,6877,6826,6774,6721, 6668,6615,6560,6505,6450,6394,6337,6280,6223,6165,6106,6047,5988,5928,5868,5807, 5746,5684,5622,5560,5497,5434,5371,5308,5244,5180,5116,5051,4987,4922,4857,4791, 4726,4660,4595,4529,4463,4397,4331,4265,4200,4134,4068,4002,3936,3870,3804,3739, 3673,3608,3542,3477,3412,3348,3283,3219,3155,3091,3028,2965,2902,2839,2777,2715, 2653,2592,2531,2471,2411,2352,2293,2234,2176,2119,2062,2005,1949,1894,1839,1784, 1731,1678,1625,1573,1522,1472,1422,1373,1324,1277,1230,1183,1138,1093,1049,1006, 963,922,881,841,802,763,726,689,653,618,584,551,519,488,457,428, 399,372,345,319,294,271,248,226,205,185,166,148,131,116,101,87, 74,62,51,41,33,25,18,12,8,4,2,0,0,0,2,4, 8,12,18,25,33,41,51,62,74,87,101,116,131,148,166,185, 205,226,248,271,294,319,345,372,399,428,457,488,519,551,584,618, 653,689,726,763,802,841,881,922,963,1006,1049,1093,1138,1183,1230,1277, 1324,1373,1422,1472,1522,1573,1625,1678,1731,1784,1839,1894,1949,2005,2062,2119, 2176,2234,2293,2352,2411,2471,2531,2592,2653,2715,2777,2839,2902,2965,3028,3091, 3155,3219,3283,3348,3412,3477,3542,3608,3673,3739,3804,3870,3936,4002,4068,4134 }; //TIM1的GPIO static void TIM_GPIO_Config(void) { GPIO_InitTypeDef TIM_GPIO_InitStruct; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB, ENABLE);//开钟 /*-----------------------------PA8,PA7------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource8,GPIO_AF_TIM1);//引脚复用 主 PA8,PA7 GPIO_PinAFConfig(GPIOA,GPIO_PinSource7,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_8; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_7; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ /*-----------------------------PA9,PB14------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource14,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_14; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ /*-----------------------------PA10,PB1------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource1,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ // TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AN; //模拟模式 pa6死刹 // TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6; //引脚 // TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 // TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 // TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; //浮空 // GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 } //TIM1 static void TIM_A1_Mode_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStruct; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);///使能时钟 //168MHZ->20kHZ 主频/(计数+1)*(预分频系数+1) //168MHz/8 * 1050 = 20khz /*-----------------------------基本结构体------------------------------------*/ TIM_TimeBaseInitStructure.TIM_Period = (8400-1); //自动重装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=(1-1); //定时器分频 TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; //1分频 TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0; //不需要重复计数 TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure); //初始化TIM /*-----------------------------基本结构体------------------------------------*/ /*-----------------------------输出比较------------------------------------*/ TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1; //pwm模式选择 TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable; ///使能输出通道 TIM_OCInitStruct.TIM_OutputNState = TIM_OutputNState_Enable; //使能互补通道 TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; //预设占空比 TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High; //PWM1和2中的CH和CCR之间值的大小(多用pwm1的模式1) TIM_OCInitStruct.TIM_OCNPolarity = TIM_OCNPolarity_High; //当使用了刹车功能时,两路PWM1和2都会被强制禁止,进而输出我们配置的的空闲先状态 TIM_OCInitStruct.TIM_OCIdleState = TIM_OCIdleState_Set; //刹车时输出通道的状态 Set = high TIM_OCInitStruct.TIM_OCNIdleState = TIM_OCNIdleState_Reset; //刹车时互补通道的状态 Reset = low TIM_OC1Init(TIM1, &TIM_OCInitStruct); //使能通道1 TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable); /* 使能通道1重载 */ TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC2Init(TIM1, &TIM_OCInitStruct); TIM_OC2PreloadConfig(TIM1,TIM_OCPreload_Enable); TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC3Init(TIM1, &TIM_OCInitStruct); TIM_OC3PreloadConfig(TIM1,TIM_OCPreload_Enable); /*-----------------------------输出比较------------------------------------*/ /*-----------------------------死区刹车------------------------------------*/ TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable; //开启死区 TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable; //开启1空闲状态 TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1; //不同的锁定级别 (看BDTR寄存器) TIM_BDTRInitStructure.TIM_DeadTime = 20; //刹车时间,(看BDTR寄存器中的DTG[7:0]) //11转换成二进制为0000 1011 死区时间看[7;5]位,此处为000 TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable; //允许刹车 //BKIN 测到低电平 比较信号禁止 TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High; //高极性 TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable; //自动输出使能(刹车输入无效) TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); //写入 /*-----------------------------死区刹车------------------------------------*/ TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE); //允许定时器更新中断 | TIM_IT_Trigger TIM_Cmd(TIM1,ENABLE); //使能定时器 TIM_CtrlPWMOutputs(TIM1, ENABLE); //主动输出使能 } static void TIM_A1_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; /*-----------------------------中断------------------------------------*/ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //分组 NVIC_InitStructure.NVIC_IRQChannel=TIM1_UP_TIM10_IRQn; //定时器1中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0; NVIC_InitStructure.NVIC_IRQChannelSubPriority=0; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; //使能中断 NVIC_Init(&NVIC_InitStructure); //写入 /*-----------------------------中断------------------------------------*/ } void TIM_Init(void) { TIM_A1_NVIC_Config(); TIM_GPIO_Config(); TIM_A1_Mode_Config(); } #include "./adc/bsp_adc.h" #include "bsp_GeneralTim.h" #include "stm32f4xx_adc.h" __IO uint16_t ADC_ConvertedValue[1]={0}; volatile uint8_t current_buffer = 0; volatile uint8_t adc_buffer_ready = 0; extern volatile uint32_t time; static void ADC_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; /*=====================通道1======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK1,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT1, &GPIO_InitStructure); } void ADC_DMA_Config(void) { DMA_InitTypeDef DMA_InitStructure; // 1. 使能 DMA 时钟 RCC_AHB1PeriphClockCmd(ADC_DMA_CLK, ENABLE); // 2. 配置 DMA 参数 DMA_InitStructure.DMA_Channel = ADC_DMA_CHANNEL; // DMA 通道 0 DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)ADC_ConvertedValue; // 目标地址:内存缓冲区 DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR; // 修正外设地址 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; // 外设到内存 DMA_InitStructure.DMA_BufferSize = 1; // 缓冲区大小 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 外设地址不递增 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable; // 单通道禁用地址递增 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; // 外设数据大小:半字(16位) DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; // 内存数据大小:半字(16位) DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; // 循环模式 DMA_InitStructure.DMA_Priority = DMA_Priority_High; // 高优先级 DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; // 禁用 FIFO 模式 DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; // FIFO 阈值 DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; // 内存突发传输:单次 DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; // 外设突发传输:单次 // 3. 初始化 DMA DMA_Init(ADC_DMA_STREAM, &DMA_InitStructure); // 4. 使能 DMA 中断(传输完成、传输错误) DMA_ITConfig(ADC_DMA_STREAM, DMA_IT_TC | DMA_IT_TE | DMA_IT_HT, ENABLE); // 5. 使能 DMA 流 DMA_Cmd(ADC_DMA_STREAM, ENABLE); } void ADC_Config(void) { ADC_InitTypeDef ADC_InitStructure; ADC_CommonInitTypeDef ADC_CommonInitStructure; // 1. 使能 ADC 时钟 RCC_APB2PeriphClockCmd(ADC_CLK, ENABLE); // 2. 配置 ADC 通用参数 ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; // 独立模式 ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div4; // ADC 时钟分频:PCLK2/4 ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1 ; // DMA 访问模式 ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; // 采样延迟 ADC_CommonInit(&ADC_CommonInitStructure); // 3. 配置 ADC 参数 ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; // 12位分辨率 ADC_InitStructure.ADC_ScanConvMode = DISABLE; // 扫描模式使能 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; // 连续转换模式 ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; // 软件触发 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; // 任意值 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; // 数据右对齐 ADC_InitStructure.ADC_NbrOfConversion = 1 ; // 转换通道数 ADC_Init(ADC_, &ADC_InitStructure); // 4. 配置 ADC 通道(通道4,PA4) ADC_RegularChannelConfig(ADC_, ADC_Channel_4, 1, ADC_SampleTime_84Cycles); // 5. 使能 ADC DMA ADC_DMACmd(ADC_, ENABLE); // 6. 使能 ADC ADC_Cmd(ADC_, ENABLE); // 7. 启动 ADC 转换 ADC_SoftwareStartConv(ADC_); } static void ADC_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } void Adc_Init(void) { ADC_GPIO_Config(); ADC_DMA_Config(); ADC_Config(); ADC_NVIC_Config(); } float ADC_GetVoltage(void) { uint32_t sum = 0; // 等待新数据就绪 while(!adc_buffer_ready); // 计算缓冲区平均值 for(int i = 0; i < ADC_BUFFER_SIZE; i++) { sum += ADC_ConvertedValue[i]; } adc_buffer_ready = 0; return (sum * 3.3f) / (ADC_BUFFER_SIZE * 4096.0f); } //float ADC_ReadVoltage(void) // { // // static uint8_t initialized = 0; // if(!initialized) // { // Adc_Init(); // initialized = 1; // } // // // // 直接读取全局数组 // return ADC_ConvertedValue[0] * 3.3f /4096; //} #ifndef __BSP_ADC_H #define __BSP_ADC_H #include "stm32f4xx.h" #define ADC_BUFFER_SIZE 32 // 增加缓冲区大小 #define ADC_CHANNELS 1 /*=====================通道1 IO======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT1 GPIOA #define ADC_GPIO_PIN1 GPIO_Pin_4 #define ADC_GPIO_CLK1 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL1 ADC_Channel_4 // ADC 序号宏定义 #define ADC_ ADC1 #define ADC_CLK RCC_APB2Periph_ADC1 // ADC DR寄存器宏定义,ADC转换后的数字值则存放在这里 #define RHEOSTAT_ADC_DR_ADDR ((u32)ADC1+0x4c) // ADC DMA 通道宏定义,这里我们使用DMA传输 // DMA 配置 #define ADC_DMA_CLK RCC_AHB1Periph_DMA2 #define ADC_DMA_CHANNEL DMA_Channel_0 #define ADC_DMA_STREAM DMA2_Stream0 void Adc_Init(void); float ADC_GetVoltage(void); //float ADC_ReadVoltage(void); #endif /* __BSP_ADC_H */ #include "pid.h" float kp, ki, kd; // PID参数 float last_error = 0,last_error_2 = 0 , last_output, setpoint, input, output; float pid_control(float KP , float KI , float KD , float Set_Point , float Now_Point) { kp = KP; ki = KI; kd = KD; setpoint = Set_Point; input = Now_Point; float error = setpoint - input; float delta_error = error - last_error; output += kp*delta_error + ki*error + kd*(error-2*last_error+last_error_2); last_error_2 = last_error; last_error = error; last_output = output; // 输出限幅 (0-100%) if(output > 100.0f) output = 100.0f; else if(output < 0.0f) output = 0.0f; return output; } //float pid_control(PID_Controller* pid, float setpoint, float input) { // // 计算当前误差 // float error = setpoint - input; // // // 比例项 // float p_term = pid->kp * error; // // // 积分项(带抗饱和) // pid->integral += error; // // // 积分限幅 // if(pid->integral > pid->max_output) // pid->integral = pid->max_output; // else if(pid->integral < pid->min_output) // pid->integral = pid->min_output; // // float i_term = pid->ki * pid->integral; // // // 微分项(标准实现) // float d_term = pid->kd * (error - pid->prev_error); // // // PID输出 // float output = p_term + i_term + d_term; // // // 输出限幅 // if(output > pid->max_output) output = pid->max_output; // else if(output < pid->min_output) output = pid->min_output; // // // 更新误差历史 // pid->prev_error = error; // // return output; //} #include "bsp_GeneralTim.h" void TIM2_Init(void) { NVIC_InitTypeDef NVIC_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); NVIC_InitStructure.NVIC_IRQChannel=TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1; NVIC_InitStructure.NVIC_IRQChannelSubPriority=0x01; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; NVIC_Init(&NVIC_InitStructure); RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE); TIM_TimeBaseInitStructure.TIM_Period = (168000-1); TIM_TimeBaseInitStructure.TIM_Prescaler= (1000-1); TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0; TIM_TimeBaseInit(TIM2,&TIM_TimeBaseInitStructure); TIM_ClearFlag(TIM2,TIM_FLAG_Update); TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); TIM_ARRPreloadConfig(TIM2,ENABLE); TIM_Cmd(TIM2,ENABLE); }
07-14
以下buck稳压代码中的占空比是谁控制的,是怎么改变的,是要人为写代码,还是TTM1-CCR1内部自己控制的,请分析出其流程,简明易懂#include "tim.h" extern uint16_t TIM1_Impluse; float z = 0; const uint32_t spwm[400] = { 4200,4265,4331,4397,4463,4529,4595,4660,4726,4791,4857,4922,4987,5051,5116,5180, 5244,5308,5371,5434,5497,5560,5622,5684,5746,5807,5868,5928,5988,6047,6106,6165, 6223,6280,6337,6394,6450,6505,6560,6615,6668,6721,6774,6826,6877,6927,6977,7026, 7075,7122,7169,7216,7261,7306,7350,7393,7436,7477,7518,7558,7597,7636,7673,7710, 7746,7781,7815,7848,7880,7911,7942,7971,8000,8027,8054,8080,8105,8128,8151,8173, 8194,8214,8233,8251,8268,8283,8298,8312,8325,8337,8348,8358,8366,8374,8381,8387, 8391,8395,8397,8399,8400,8399,8397,8395,8391,8387,8381,8374,8366,8358,8348,8337, 8325,8312,8298,8283,8268,8251,8233,8214,8194,8173,8151,8128,8105,8080,8054,8027, 8000,7971,7942,7911,7880,7848,7815,7781,7746,7710,7673,7636,7597,7558,7518,7477, 7436,7393,7350,7306,7261,7216,7169,7122,7075,7026,6977,6927,6877,6826,6774,6721, 6668,6615,6560,6505,6450,6394,6337,6280,6223,6165,6106,6047,5988,5928,5868,5807, 5746,5684,5622,5560,5497,5434,5371,5308,5244,5180,5116,5051,4987,4922,4857,4791, 4726,4660,4595,4529,4463,4397,4331,4265,4200,4134,4068,4002,3936,3870,3804,3739, 3673,3608,3542,3477,3412,3348,3283,3219,3155,3091,3028,2965,2902,2839,2777,2715, 2653,2592,2531,2471,2411,2352,2293,2234,2176,2119,2062,2005,1949,1894,1839,1784, 1731,1678,1625,1573,1522,1472,1422,1373,1324,1277,1230,1183,1138,1093,1049,1006, 963,922,881,841,802,763,726,689,653,618,584,551,519,488,457,428, 399,372,345,319,294,271,248,226,205,185,166,148,131,116,101,87, 74,62,51,41,33,25,18,12,8,4,2,0,0,0,2,4, 8,12,18,25,33,41,51,62,74,87,101,116,131,148,166,185, 205,226,248,271,294,319,345,372,399,428,457,488,519,551,584,618, 653,689,726,763,802,841,881,922,963,1006,1049,1093,1138,1183,1230,1277, 1324,1373,1422,1472,1522,1573,1625,1678,1731,1784,1839,1894,1949,2005,2062,2119, 2176,2234,2293,2352,2411,2471,2531,2592,2653,2715,2777,2839,2902,2965,3028,3091, 3155,3219,3283,3348,3412,3477,3542,3608,3673,3739,3804,3870,3936,4002,4068,4134 }; //TIM1的GPIO static void TIM_GPIO_Config(void) { GPIO_InitTypeDef TIM_GPIO_InitStruct; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB, ENABLE);//开钟 /*-----------------------------PA8,PA7------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource8,GPIO_AF_TIM1);//引脚复用 主 PA8,PA7 GPIO_PinAFConfig(GPIOA,GPIO_PinSource7,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_8; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_7; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ /*-----------------------------PA9,PB14------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource14,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_14; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ /*-----------------------------PA10,PB1------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource1,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ } //TIM1 static void TIM_Mode_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStruct; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);///使能时钟 //168MHZ->20kHZ 主频/(计数+1)*(预分频系数+1) //168MHz/8 * 1050 = 20khz /*-----------------------------基本结构体------------------------------------*/ TIM_TimeBaseInitStructure.TIM_Period = (4200-1); //自动重装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=(2-1); //定时器分频 TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; //1分频 TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0; //不需要重复计数 TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure); //初始化TIM /*-----------------------------基本结构体------------------------------------*/ // 配置TIM1更新事件作为TRGO输出 TIM_SelectOutputTrigger(TIM1, TIM_TRGOSource_Update); /*-----------------------------输出比较------------------------------------*/ TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1; //pwm模式选择 TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable; ///使能输出通道 TIM_OCInitStruct.TIM_OutputNState = TIM_OutputNState_Enable; //使能互补通道 TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; //预设占空比 TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High; //PWM1和2中的CH和CCR之间值的大小(多用pwm1的模式1) TIM_OCInitStruct.TIM_OCNPolarity = TIM_OCNPolarity_High; //当使用了刹车功能时,两路PWM1和2都会被强制禁止,进而输出我们配置的的空闲先状态 TIM_OCInitStruct.TIM_OCIdleState = TIM_OCIdleState_Set; //刹车时输出通道的状态 Set = high TIM_OCInitStruct.TIM_OCNIdleState = TIM_OCNIdleState_Reset; //刹车时互补通道的状态 Reset = low TIM_OC1Init(TIM1, &TIM_OCInitStruct); //使能通道1 TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable); /* 使能通道1重载 */ TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC2Init(TIM1, &TIM_OCInitStruct); TIM_OC2PreloadConfig(TIM1,TIM_OCPreload_Enable); TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC3Init(TIM1, &TIM_OCInitStruct); TIM_OC3PreloadConfig(TIM1,TIM_OCPreload_Enable); /*-----------------------------输出比较------------------------------------*/ /*-----------------------------死区刹车------------------------------------*/ TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable; //开启死区 TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable; //开启1空闲状态 TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1; //不同的锁定级别 (看BDTR寄存器) TIM_BDTRInitStructure.TIM_DeadTime = 84; //刹车时间,(看BDTR寄存器中的DTG[7:0]) //11转换成二进制为0000 1011 死区时间看[7;5]位,此处为000 TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable; //允许刹车 //BKIN 测到低电平 比较信号禁止 TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High; //高极性 TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable; //自动输出使能(刹车输入无效) TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); //写入 /*-----------------------------死区刹车------------------------------------*/ TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE); //允许定时器更新中断 | TIM_IT_Trigger TIM_Cmd(TIM1,ENABLE); //使能定时器 TIM_CtrlPWMOutputs(TIM1, ENABLE); //主动输出使能 } static void TIM_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; /*-----------------------------中断------------------------------------*/ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //分组 NVIC_InitStructure.NVIC_IRQChannel=TIM1_UP_TIM10_IRQn; //定时器1中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0; NVIC_InitStructure.NVIC_IRQChannelSubPriority=0; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; //使能中断 NVIC_Init(&NVIC_InitStructure); //写入 /*-----------------------------中断------------------------------------*/ } void TIM_Init(void) { TIM_NVIC_Config(); TIM_GPIO_Config(); TIM_Mode_Config(); } #include "stm32f4xx.h" #include "delay.h" #include "oled.h" #include "stdio.h" #include "stdlib.h" #include "arm_math.h" #include "pid.h" #include "./adc/bsp_adc.h" #include "tim.h" #include "General_Tim.h" extern float voltage1, voltage2, voltage3; extern float Vout_actual; extern volatile uint8_t adc_data_ready; float Target= 1; // 目标输出电压 float pid_out; volatile uint32_t systick_count = 0; static uint32_t last_display_time = 0; int main(void) { GENERAL_TIM_Init(); OLED_Init(); delay_ms(500); Adc_Init(); TIM_Init(); char str[40]; while(1) { if(adc_data_ready) { adc_data_ready = 0; ADC_Read(); // 读取并计算电压 // PID计算 pid_out = pid_control(0.8f, 0.05f, 0.02f, Target, Vout_actual); if(Vout_actual > Target * 1.2f) // 过压保护 TIM1->CCR1 = 0;// 触发保护逻辑 // 安全更新PWM (限制在0-8400) uint16_t pwm_val = (uint16_t)(pid_out * 84); // 0-100% -> 0-8400 if(pwm_val > 8400) pwm_val = 8400; TIM1->CCR1 = pwm_val; } if (systick_count- last_display_time >= 10) { last_display_time = systick_count; sprintf(str, "Vout: %.2fV", Vout_actual); OLED_ShowString(0, 1, (u8*)str, 12); OLED_Refresh_Gram(); } } } #include "stm32f4xx_it.h" #include "oled.h" #include <math.h> #include "./adc/bsp_adc.h" #include "pid.h" extern float Vout_actual; extern float Target ; // 目标输出电压 extern float pid_out; extern volatile uint32_t systick_count; volatile uint8_t adc_data_ready = 0;// 全局变量 uint16_t TIM1_Impluse;//高级定时器占空比 // 简化中断处理函数 void TIM1_UP_IRQHandler(void) { if (TIM_GetITStatus(TIM1, TIM_IT_Update)) { TIM_ClearFlag(TIM1,TIM_IT_Update); } } void DMA2_Stream0_IRQHandler(void) { if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0) != RESET) { adc_data_ready = 1; // 设置数据就绪标志 DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0); } } // 使用TIM2作为毫秒计时器 void TIM2_IRQHandler(void) { if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) { systick_count++; TIM_ClearITPendingBit(TIM2, TIM_IT_Update); } } void NMI_Handler(void) { } void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) {} } void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) {} } void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) {} } void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) {} } void DebugMon_Handler(void) { } void SVC_Handler(void) { } void PendSV_Handler(void) { } void SysTick_Handler(void) { } #include "./adc/bsp_adc.h" #include "oled.h" #include "stdio.h" #include "stdlib.h" char st[40]; __IO uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]={0}; float voltage1=0, voltage2=0, voltage3=0; float Vout_actual; static void ADC_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; /*=====================通道1======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK1,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT1, &GPIO_InitStructure); /*=====================通道2======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK2,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN2; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT2, &GPIO_InitStructure); /*=====================通道3=======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK3,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT3, &GPIO_InitStructure); } static void ADC_Mode_Config(void) { DMA_InitTypeDef DMA_InitStructure; ADC_InitTypeDef ADC_InitStructure; ADC_CommonInitTypeDef ADC_CommonInitStructure; // ------------------DMA Init 结构体参数 初始化-------------------------- // ADC1使用DMA2,数据流0,通道0,这个是手册固定死的 // 开启DMA时钟 RCC_AHB1PeriphClockCmd(ADC_DMA_CLK, ENABLE); // 外设基址为:ADC 数据寄存器地址 DMA_InitStructure.DMA_PeripheralBaseAddr = RHEOSTAT_ADC_DR_ADDR; // 存储器地址,实际上就是一个内部SRAM的变量 DMA_InitStructure.DMA_Memory0BaseAddr = (u32)ADC_ConvertedValue; // 数据传输方向为外设到存储器 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; // 缓冲区大小为,指一次传输的数据量 DMA_InitStructure.DMA_BufferSize = RHEOSTAT_NOFCHANEL; // 外设寄存器只有一个,地址不用递增 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 存储器地址固定 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; // // 外设数据大小为半字,即两个字节 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; // 存储器数据大小也为半字,跟外设数据大小相同 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; // 循环传输模式 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; // DMA 传输通道优先级为高,当使用一个DMA通道时,优先级设置不影响 DMA_InitStructure.DMA_Priority = DMA_Priority_High; // 禁止DMA FIFO ,使用直连模式 DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; // FIFO 大小,FIFO模式禁止时,这个不用配置 DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; // 选择 DMA 通道,通道存在于流中 DMA_InitStructure.DMA_Channel = ADC_DMA_CHANNEL; //初始化DMA流,流相当于一个大的管道,管道里面有很多通道 DMA_Init(ADC_DMA_STREAM, &DMA_InitStructure); // 使能DMA传输完成中断 DMA_ITConfig(ADC_DMA_STREAM, DMA_IT_TC, ENABLE); // 使能DMA流 DMA_Cmd(ADC_DMA_STREAM, ENABLE); // 开启ADC时钟 RCC_APB2PeriphClockCmd(ADC_CLK , ENABLE); // -------------------ADC Common 结构体 参数 初始化------------------------ // 独立ADC模式 ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; // 时钟为fpclk x分频 ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div4; // 禁止DMA直接访问模式 ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; // 采样时间间隔 ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_20Cycles; ADC_CommonInit(&ADC_CommonInitStructure); // -------------------ADC Init 结构体 参数 初始化-------------------------- ADC_StructInit(&ADC_InitStructure); // ADC 分辨率 ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; // 扫描模式,多通道采集需要 ADC_InitStructure.ADC_ScanConvMode = ENABLE; // 连续转换 ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; //禁止外部边沿触发 ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Rising; //外部触发通道, ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; // TIM1触发; //数据右对齐 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //转换通道 1个 ADC_InitStructure.ADC_NbrOfConversion = RHEOSTAT_NOFCHANEL; ADC_Init(ADC_, &ADC_InitStructure); //--------------------------------------------------------------------------- // 配置 ADC 通道转换顺序和采样时间周期 ADC_RegularChannelConfig(ADC_, ADC_CHANNEL1, 1, ADC_SampleTime_480Cycles); ADC_RegularChannelConfig(ADC_, ADC_CHANNEL2, 2, ADC_SampleTime_15Cycles); ADC_RegularChannelConfig(ADC_, ADC_CHANNEL3, 3, ADC_SampleTime_15Cycles); // 使能DMA请求 after last transfer (Single-ADC mode) ADC_DMARequestAfterLastTransferCmd(ADC_, ENABLE); // 使能ADC DMA ADC_DMACmd(ADC_, ENABLE); // 使能ADC ADC_Cmd(ADC_, ENABLE); // //开始adc转换,软件触发 // ADC_SoftwareStartConv(ADC_); } static void ADC_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //配置DMA NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority =1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } // 修改ADC读取函数 (adc部分) #define VOLTAGE_SCALE 4.0f // 根据实际分压电阻调整 (12V→3V分压) void ADC_Read(void) { // 正确计算电压值 (考虑分压比例) voltage1 = ADC_ConvertedValue[0] * 3.3f* 0.000244140625; Vout_actual= voltage1; } void Adc_Init(void) { ADC_GPIO_Config(); ADC_Mode_Config(); ADC_NVIC_Config(); } #include "pid.h" //float kp, ki, kd; // PID参数 //float last_error = 0,last_error_2 = 0 , last_output, setpoint, input, output; float pid_control(float KP, float KI, float KD, float Set_Point, float Now_Point) { static float integral = 0; static float prev_error = 0; const float max_integral = 100.0f / KI; // 积分限幅 float error = Set_Point - Now_Point; // 积分项(带抗饱和) integral += error; if(integral > max_integral) integral = max_integral; else if(integral < -max_integral) integral = -max_integral; // 微分项 float derivative = error - prev_error; // PID输出 float output = KP * error + KI * integral + KD * derivative; // 输出限幅 if(output > 100.0f) output = 100.0f; else if(output < 0.0f) output = 0.0f; prev_error = error; return output; } #include "General_Tim.h" // 中断优先级配置 static void GENERAL_TIM_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; // 设置中断组为0 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0); // 设置中断来源 NVIC_InitStructure.NVIC_IRQChannel =TIM2_IRQn ; // 设置主优先级为 0 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; // 设置抢占优先级为3 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } ///* // * 注意:TIM_TimeBaseInitTypeDef结构体里面有5个成员,TIM6和TIM7的寄存器里面只有 // * TIM_Prescaler和TIM_Period,所以使用TIM6和TIM7的时候只需初始化这两个成员即可, // * 另外三个成员是通用定时器和高级定时器才有. // *----------------------------------------------------------------------------- // *typedef struct // *{ TIM_Prescaler 都有 // * TIM_CounterMode TIMx,x[6,7]没有,其他都有 // * TIM_Period 都有 // * TIM_ClockDivision TIMx,x[6,7]没有,其他都有 // * TIM_RepetitionCounter TIMx,x[1,8,15,16,17]才有 // *}TIM_TimeBaseInitTypeDef; // *----------------------------------------------------------------------------- // */ static void GENERAL_TIM_Mode_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); // 1ms中断 (TIM2在APB1上,时钟84MHz) TIM_TimeBaseStructure.TIM_Period = 8400 - 1; // 84MHz/8400 = 10kHz TIM_TimeBaseStructure.TIM_Prescaler = 8400 - 1; // 84MHz/8400 = 10kHz → 0.1ms TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); TIM_Cmd(TIM2, ENABLE); } void GENERAL_TIM_Init(void) { GENERAL_TIM_NVIC_Config(); GENERAL_TIM_Mode_Config(); } /*********************************************END OF FILE**********************/ #ifndef __BSP_ADC_H #define __BSP_ADC_H #include "stm32f4xx.h" #define RHEOSTAT_NOFCHANEL 3 /*=====================通道1 IO======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT1 GPIOE #define ADC_GPIO_PIN1 GPIO_Pin_5 #define ADC_GPIO_CLK1 RCC_AHB1Periph_GPIOE #define ADC_CHANNEL1 ADC_Channel_15 /*=====================通道2 IO ======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT2 GPIOA #define ADC_GPIO_PIN2 GPIO_Pin_2 #define ADC_GPIO_CLK2 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL2 ADC_Channel_2 /*=====================通道3 IO ======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT3 GPIOA #define ADC_GPIO_PIN3 GPIO_Pin_3 #define ADC_GPIO_CLK3 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL3 ADC_Channel_3 // ADC 序号宏定义 #define ADC_ ADC1 #define ADC_CLK RCC_APB2Periph_ADC1 // ADC DR寄存器宏定义,ADC转换后的数字值则存放在这里 #define RHEOSTAT_ADC_DR_ADDR ((u32)ADC1+0x4c) // ADC DMA 通道宏定义,这里我们使用DMA传输 #define ADC_DMA_CLK RCC_AHB1Periph_DMA2 #define ADC_DMA_CHANNEL DMA_Channel_0 #define ADC_DMA_STREAM DMA2_Stream0 void Adc_Init(void); void ADC_Read(void); #endif /* __BSP_ADC_H */
07-10
为什么下面这个buck稳压代码所呈现的结果oled屏上显示的Duty=100.000,而且TIM1->CCR2=8400,而且改变pid的相关参数并没有用,一直是这个值#include "stm32f4xx.h" #include "delay.h" #include "oled.h" #include "stdio.h" #include "stdlib.h" #include "arm_math.h" #include "pid.h" #include "./adc/bsp_adc.h" #include "tim.h" #include "bsp_GeneralTim.h" float pid_out = 0; float Vout_actual = 0; //extern __IO uint16_t ADC_ConvertedValue[RHEOSTAT_NOFCHANEL]; extern volatile uint8_t adc_data_ready; extern volatile uint8_t tim_update_flag; extern volatile uint32_t last_adc_value; float six = 0; int main(void) { Adc_Init(); TIM_Init(); OLED_Init(); TIM2_Init(); TIM_Cmd(TIM1, ENABLE); // TIM1未启用 ADC_Cmd(ADC1, ENABLE); // ADC未启动 ADC_SoftwareStartConv(ADC1); // 未开始ADC转换 while(1) {} } void TIM2_IRQHandler(void) { if(TIM_GetITStatus(TIM2,TIM_IT_Update) == SET ) { char str[40]; sprintf(str,"Vout = %.3f",Vout_actual); OLED_ShowString(WORD_WIDTH*0,WORD_HIGH*0,(u8 *)str,WORD_SIZE); sprintf(str,"Duty = %.3f",pid_out); OLED_ShowString(WORD_WIDTH*0,WORD_HIGH*1,(u8 *)str,WORD_SIZE); sprintf(str,"test = %.3f",six); OLED_ShowString(WORD_WIDTH*0,WORD_HIGH*2,(u8 *)str,WORD_SIZE); OLED_Refresh_Gram(); sprintf(str,"TIM1->CCR2 = %d",TIM1->CCR2); OLED_ShowString(WORD_WIDTH*0,WORD_HIGH*3,(u8 *)str,WORD_SIZE); OLED_Refresh_Gram(); } TIM_ClearITPendingBit(TIM2, TIM_IT_Update); } #include "stm32f4xx_it.h" #include "oled.h" #include <math.h> #include "./adc/bsp_adc.h" #include "pid.h" #include "bsp_GeneralTim.h" float Taget=12; extern uint16_t ADC_ConvertedValue[1]; extern float voltage1; extern float pid_out; extern float Vout_actual; extern uint16_t TIM1_Impluse;//高级定时器占空比 volatile uint8_t adc_data_ready = 0; volatile uint8_t tim_update_flag=0 ; volatile uint32_t last_adc_value = 0; extern volatile uint32_t time; extern float six; // 在DMA中断中仅设置标志 void DMA2_Stream0_IRQHandler(void) { if (DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0)) { adc_data_ready = 1; // 仅设置标志 DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0); } } void TIM1_UP_TIM10_IRQHandler(void) { if(TIM_GetITStatus(TIM1, TIM_IT_Update)) { if(adc_data_ready) { // 修正ADC转换公式 Vout_actual = ADC_ConvertedValue[0] * 3.3f / 4096.0f; adc_data_ready = 0; // // PID计算 pid_out = pid_control(2.6, 1.5, 0.1, 12, Vout_actual); TIM1_Impluse=pid_out*84; // 限幅保护 if(pid_out > TIM1->ARR) TIM1_Impluse = TIM1->ARR; // 更新PWM TIM1->CCR2 = TIM1_Impluse; six = 1; // 存储实际设置的PWM值 } TIM_ClearITPendingBit(TIM1, TIM_IT_Update); } } void NMI_Handler(void) { } void HardFault_Handler(void) { /* Go to infinite loop when Hard Fault exception occurs */ while (1) {} } void MemManage_Handler(void) { /* Go to infinite loop when Memory Manage exception occurs */ while (1) {} } void BusFault_Handler(void) { /* Go to infinite loop when Bus Fault exception occurs */ while (1) {} } void UsageFault_Handler(void) { /* Go to infinite loop when Usage Fault exception occurs */ while (1) {} } void DebugMon_Handler(void) { } void SVC_Handler(void) { } void PendSV_Handler(void) { } void SysTick_Handler(void) { } #include "tim.h" uint16_t TIM1_Impluse = 4200;//预设占空比 float z = 0; const uint32_t spwm[400] = { 4200,4265,4331,4397,4463,4529,4595,4660,4726,4791,4857,4922,4987,5051,5116,5180, 5244,5308,5371,5434,5497,5560,5622,5684,5746,5807,5868,5928,5988,6047,6106,6165, 6223,6280,6337,6394,6450,6505,6560,6615,6668,6721,6774,6826,6877,6927,6977,7026, 7075,7122,7169,7216,7261,7306,7350,7393,7436,7477,7518,7558,7597,7636,7673,7710, 7746,7781,7815,7848,7880,7911,7942,7971,8000,8027,8054,8080,8105,8128,8151,8173, 8194,8214,8233,8251,8268,8283,8298,8312,8325,8337,8348,8358,8366,8374,8381,8387, 8391,8395,8397,8399,8400,8399,8397,8395,8391,8387,8381,8374,8366,8358,8348,8337, 8325,8312,8298,8283,8268,8251,8233,8214,8194,8173,8151,8128,8105,8080,8054,8027, 8000,7971,7942,7911,7880,7848,7815,7781,7746,7710,7673,7636,7597,7558,7518,7477, 7436,7393,7350,7306,7261,7216,7169,7122,7075,7026,6977,6927,6877,6826,6774,6721, 6668,6615,6560,6505,6450,6394,6337,6280,6223,6165,6106,6047,5988,5928,5868,5807, 5746,5684,5622,5560,5497,5434,5371,5308,5244,5180,5116,5051,4987,4922,4857,4791, 4726,4660,4595,4529,4463,4397,4331,4265,4200,4134,4068,4002,3936,3870,3804,3739, 3673,3608,3542,3477,3412,3348,3283,3219,3155,3091,3028,2965,2902,2839,2777,2715, 2653,2592,2531,2471,2411,2352,2293,2234,2176,2119,2062,2005,1949,1894,1839,1784, 1731,1678,1625,1573,1522,1472,1422,1373,1324,1277,1230,1183,1138,1093,1049,1006, 963,922,881,841,802,763,726,689,653,618,584,551,519,488,457,428, 399,372,345,319,294,271,248,226,205,185,166,148,131,116,101,87, 74,62,51,41,33,25,18,12,8,4,2,0,0,0,2,4, 8,12,18,25,33,41,51,62,74,87,101,116,131,148,166,185, 205,226,248,271,294,319,345,372,399,428,457,488,519,551,584,618, 653,689,726,763,802,841,881,922,963,1006,1049,1093,1138,1183,1230,1277, 1324,1373,1422,1472,1522,1573,1625,1678,1731,1784,1839,1894,1949,2005,2062,2119, 2176,2234,2293,2352,2411,2471,2531,2592,2653,2715,2777,2839,2902,2965,3028,3091, 3155,3219,3283,3348,3412,3477,3542,3608,3673,3739,3804,3870,3936,4002,4068,4134 }; //TIM1的GPIO static void TIM_GPIO_Config(void) { GPIO_InitTypeDef TIM_GPIO_InitStruct; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB, ENABLE);//开钟 /*-----------------------------PA8,PA7------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource8,GPIO_AF_TIM1);//引脚复用 主 PA8,PA7 GPIO_PinAFConfig(GPIOA,GPIO_PinSource7,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_8; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_7; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ /*-----------------------------PA9,PB14------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource14,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_9; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_14; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ /*-----------------------------PA10,PB1------------------------------------*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_TIM1);//引脚复用 主 GPIO_PinAFConfig(GPIOB,GPIO_PinSource1,GPIO_AF_TIM1);//引脚复用 补 TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; //模拟模式GPIO_Mode_AN/F TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10; //引脚 TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_1; GPIO_Init(GPIOB, &TIM_GPIO_InitStruct); /*-----------------------------------------------------------------------*/ // TIM_GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AN; //模拟模式 pa6死刹 // TIM_GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6; //引脚 // TIM_GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; //高速 // TIM_GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; //推挽 // TIM_GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; //浮空 // GPIO_Init(GPIOA, &TIM_GPIO_InitStruct); //写入 } //TIM1 static void TIM_A1_Mode_Config(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStruct; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);///使能时钟 //168MHZ->20kHZ 主频/(计数+1)*(预分频系数+1) //168MHz/8 * 1050 = 20khz /*-----------------------------基本结构体------------------------------------*/ TIM_TimeBaseInitStructure.TIM_Period = (8400-1); //自动重装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=(1-1); //定时器分频 TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; //1分频 TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0; //不需要重复计数 TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure); //初始化TIM /*-----------------------------基本结构体------------------------------------*/ /*-----------------------------输出比较------------------------------------*/ TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1; //pwm模式选择 TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable; ///使能输出通道 TIM_OCInitStruct.TIM_OutputNState = TIM_OutputNState_Enable; //使能互补通道 TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; //预设占空比 TIM_OCInitStruct.TIM_OCPolarity = TIM_OCPolarity_High; //PWM1和2中的CH和CCR之间值的大小(多用pwm1的模式1) TIM_OCInitStruct.TIM_OCNPolarity = TIM_OCNPolarity_High; //当使用了刹车功能时,两路PWM1和2都会被强制禁止,进而输出我们配置的的空闲先状态 TIM_OCInitStruct.TIM_OCIdleState = TIM_OCIdleState_Set; //刹车时输出通道的状态 Set = high TIM_OCInitStruct.TIM_OCNIdleState = TIM_OCNIdleState_Reset; //刹车时互补通道的状态 Reset = low TIM_OC1Init(TIM1, &TIM_OCInitStruct); //使能通道1 TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable); /* 使能通道1重载 */ TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC2Init(TIM1, &TIM_OCInitStruct); TIM_OC2PreloadConfig(TIM1,TIM_OCPreload_Enable); TIM_OCInitStruct.TIM_Pulse = TIM1_Impluse; TIM_OC3Init(TIM1, &TIM_OCInitStruct); TIM_OC3PreloadConfig(TIM1,TIM_OCPreload_Enable); /*-----------------------------输出比较------------------------------------*/ /*-----------------------------死区刹车------------------------------------*/ TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable; //开启死区 TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable; //开启1空闲状态 TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1; //不同的锁定级别 (看BDTR寄存器) TIM_BDTRInitStructure.TIM_DeadTime = 20; //刹车时间,(看BDTR寄存器中的DTG[7:0]) //11转换成二进制为0000 1011 死区时间看[7;5]位,此处为000 TIM_BDTRInitStructure.TIM_Break = TIM_Break_Enable; //允许刹车 //BKIN 测到低电平 比较信号禁止 TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High; //高极性 TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable; //自动输出使能(刹车输入无效) TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); //写入 /*-----------------------------死区刹车------------------------------------*/ TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE); //允许定时器更新中断 | TIM_IT_Trigger TIM_Cmd(TIM1,ENABLE); //使能定时器 TIM_CtrlPWMOutputs(TIM1, ENABLE); //主动输出使能 } static void TIM_A1_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; /*-----------------------------中断------------------------------------*/ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //分组 NVIC_InitStructure.NVIC_IRQChannel=TIM1_UP_TIM10_IRQn; //定时器1中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0; NVIC_InitStructure.NVIC_IRQChannelSubPriority=0; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; //使能中断 NVIC_Init(&NVIC_InitStructure); //写入 /*-----------------------------中断------------------------------------*/ } void TIM_Init(void) { TIM_A1_NVIC_Config(); TIM_GPIO_Config(); TIM_A1_Mode_Config(); } #include "./adc/bsp_adc.h" #include "bsp_GeneralTim.h" #include "stm32f4xx_adc.h" __IO uint16_t ADC_ConvertedValue[1]={0}; volatile uint8_t current_buffer = 0; volatile uint8_t adc_buffer_ready = 0; extern volatile uint32_t time; static void ADC_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; /*=====================通道1======================*/ // 使能 GPIO 时钟 RCC_AHB1PeriphClockCmd(ADC_GPIO_CLK1,ENABLE); // 配置 IO GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //不上拉不下拉 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ; GPIO_Init(ADC_GPIO_PORT1, &GPIO_InitStructure); } void ADC_DMA_Config(void) { DMA_InitTypeDef DMA_InitStructure; // 1. 使能 DMA 时钟 RCC_AHB1PeriphClockCmd(ADC_DMA_CLK, ENABLE); // 2. 配置 DMA 参数 DMA_InitStructure.DMA_Channel = ADC_DMA_CHANNEL; // DMA 通道 0 DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)ADC_ConvertedValue; // 目标地址:内存缓冲区 DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR; // 修正外设地址 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; // 外设到内存 DMA_InitStructure.DMA_BufferSize = 1; // 缓冲区大小 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 外设地址不递增 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable; // 单通道禁用地址递增 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; // 外设数据大小:半字(16位) DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; // 内存数据大小:半字(16位) DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; // 循环模式 DMA_InitStructure.DMA_Priority = DMA_Priority_High; // 高优先级 DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; // 禁用 FIFO 模式 DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; // FIFO 阈值 DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; // 内存突发传输:单次 DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; // 外设突发传输:单次 // 3. 初始化 DMA DMA_Init(ADC_DMA_STREAM, &DMA_InitStructure); // 4. 使能 DMA 中断(传输完成、传输错误) DMA_ITConfig(ADC_DMA_STREAM, DMA_IT_TC | DMA_IT_TE | DMA_IT_HT, ENABLE); // 5. 使能 DMA 流 DMA_Cmd(ADC_DMA_STREAM, ENABLE); } void ADC_Config(void) { ADC_InitTypeDef ADC_InitStructure; ADC_CommonInitTypeDef ADC_CommonInitStructure; // 1. 使能 ADC 时钟 RCC_APB2PeriphClockCmd(ADC_CLK, ENABLE); // 2. 配置 ADC 通用参数 ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; // 独立模式 ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div4; // ADC 时钟分频:PCLK2/4 ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1 ; // DMA 访问模式 ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; // 采样延迟 ADC_CommonInit(&ADC_CommonInitStructure); // 3. 配置 ADC 参数 ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; // 12位分辨率 ADC_InitStructure.ADC_ScanConvMode = DISABLE; // 扫描模式使能 ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; // 连续转换模式 ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; // 软件触发 ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; // 任意值 ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; // 数据右对齐 ADC_InitStructure.ADC_NbrOfConversion = 1 ; // 转换通道数 ADC_Init(ADC_, &ADC_InitStructure); // 4. 配置 ADC 通道(通道4,PA4) ADC_RegularChannelConfig(ADC_, ADC_Channel_4, 1, ADC_SampleTime_84Cycles); // 5. 使能 ADC DMA ADC_DMACmd(ADC_, ENABLE); // 6. 启用持续DMA请求(关键配置) ADC_DMARequestAfterLastTransferCmd(ADC_,ENABLE); // 7. 使能 ADC ADC_Cmd(ADC_, ENABLE); // 8. 启动 ADC 转换 ADC_SoftwareStartConv(ADC_); } static void ADC_NVIC_Config(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } void Adc_Init(void) { ADC_GPIO_Config(); ADC_DMA_Config(); ADC_Config(); ADC_NVIC_Config(); } float ADC_GetVoltage(void) { uint32_t sum = 0; // 等待新数据就绪 while(!adc_buffer_ready); // 计算缓冲区平均值 for(int i = 0; i < ADC_BUFFER_SIZE; i++) { sum += ADC_ConvertedValue[i]; } adc_buffer_ready = 0; return (sum * 3.3f) / (ADC_BUFFER_SIZE * 4096.0f); } //float ADC_ReadVoltage(void) // { // // static uint8_t initialized = 0; // if(!initialized) // { // Adc_Init(); // initialized = 1; // } // // // // 直接读取全局数组 // return ADC_ConvertedValue[0] * 3.3f /4096; //} #ifndef __BSP_ADC_H #define __BSP_ADC_H #include "stm32f4xx.h" #define ADC_BUFFER_SIZE 32 // 增加缓冲区大小 #define ADC_CHANNELS 1 /*=====================通道1 IO======================*/ // ADC IO宏定义 #define ADC_GPIO_PORT1 GPIOA #define ADC_GPIO_PIN1 GPIO_Pin_4 #define ADC_GPIO_CLK1 RCC_AHB1Periph_GPIOA #define ADC_CHANNEL1 ADC_Channel_4 // ADC 序号宏定义 #define ADC_ ADC1 #define ADC_CLK RCC_APB2Periph_ADC1 // ADC DR寄存器宏定义,ADC转换后的数字值则存放在这里 #define RHEOSTAT_ADC_DR_ADDR ((u32)ADC1+0x4c) // ADC DMA 通道宏定义,这里我们使用DMA传输 // DMA 配置 #define ADC_DMA_CLK RCC_AHB1Periph_DMA2 #define ADC_DMA_CHANNEL DMA_Channel_0 #define ADC_DMA_STREAM DMA2_Stream0 void Adc_Init(void); float ADC_GetVoltage(void); //float ADC_ReadVoltage(void); #endif /* __BSP_ADC_H */ #include "pid.h" float kp, ki, kd; // PID参数 float last_error = 0,last_error_2 = 0 , last_output, setpoint, input, output; float pid_control(float KP , float KI , float KD , float Set_Point , float Now_Point) { kp = KP; ki = KI; kd = KD; setpoint = Set_Point; input = Now_Point; float error = setpoint - input; float delta_error = error - last_error; output += kp*delta_error + ki*error + kd*(error-2*last_error+last_error_2); last_error_2 = last_error; last_error = error; last_output = output; // 输出限幅 (0-100%) if(output > 100.0f) output = 100.0f; else if(output < 0.0f) output = 0.0f; return output; } #include "bsp_GeneralTim.h" void TIM2_Init(void) { NVIC_InitTypeDef NVIC_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); NVIC_InitStructure.NVIC_IRQChannel=TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1; NVIC_InitStructure.NVIC_IRQChannelSubPriority=0x01; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; NVIC_Init(&NVIC_InitStructure); RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE); TIM_TimeBaseInitStructure.TIM_Period = (168000-1); TIM_TimeBaseInitStructure.TIM_Prescaler= (1000-1); TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; TIM_TimeBaseInitStructure.TIM_RepetitionCounter=0; TIM_TimeBaseInit(TIM2,&TIM_TimeBaseInitStructure); TIM_ClearFlag(TIM2,TIM_FLAG_Update); TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); TIM_ARRPreloadConfig(TIM2,ENABLE); TIM_Cmd(TIM2,ENABLE); }
最新发布
07-15
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值