398. Random Pick Index

本文探讨了一种从含重复元素的整数数组中随机选取指定目标值索引的方法,并提供了一个C++实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an array of integers with possible duplicates, randomly output the index of a given target number. You can assume that the given target number must exist in the array.

Note:
The array size can be very large. Solution that uses too much extra space will not pass the judge.

Example:

int[] nums = new int[] {1,2,3,3,3};
Solution solution = new Solution(nums);

// pick(3) should return either index 2, 3, or 4 randomly. Each index should have equal probability of returning.
solution.pick(3);

// pick(1) should return 0. Since in the array only nums[0] is equal to 1.
solution.pick(1);

这题其实不难,但有一个很有意思的点,我一开始想的是,数组本身是乱序的,我直接在坐标范围内产生一个随机数作为检索的开始,然后返回我遇到的第一个target值的坐标即可,听上去也没什么问题。可是在[1,2,3,3,3]这个例子就错了,测试用例拼命测试返回3的下标,看结果是不是在下标2,3,4之间均匀分布,结果我的代码就不可以,我看了看我的结果,2的比例明显多于3和4,我突然发现,如果数组不是随机排列,那么我的算法在这种重复数字扎堆出现的情况下就错了。拿这个例子来说,数组一共5个数,随机产生的检索起始数是A[0]到A[4]的概率是一样的,但这种情况下,起始是0,1,2的结果都是返回下标为2的那个3,所以这就是为什么我的返回结果里2的出现最多,理论上2的概率是另外俩单个概率的三倍了。
所以最后我还是直接检索了一遍原数组,然后将target的下标存起来,然后再存起来的下标里产生随机数选择一个返回。这样时间复杂度和空间复杂度都是O(n)。

class Solution {
private:
    vector<int> num;
public:
    Solution(vector<int> nums): num(nums) {}

    int pick(int target) {
        int len = num.size();
        vector<int> ind;
        for (int i = 0; i < len; i++) {
            if (num[i] == target) ind.push_back(i);
        }
        int rd = rand() % ind.size();
        return ind[rd];
    }
};

更好的解法后续再补充。

def spatially_regular_gen(): # Generator loop for i in range(num_per_epoch): # Choose the cloud with the lowest probability cloud_idx = int(np.argmin(self.min_possibility[split])) # choose the point with the minimum of possibility in the cloud as query point point_ind = np.argmin(self.possibility[split][cloud_idx]) # Get all points within the cloud from tree structure points = np.array(self.input_trees[split][cloud_idx].data, copy=False) # Center point of input region center_point = points[point_ind, :].reshape(1, -1) # Add noise to the center point noise = np.random.normal(scale=cfg.noise_init / 10, size=center_point.shape) pick_point = center_point + noise.astype(center_point.dtype) # Check if the number of points in the selected cloud is less than the predefined num_points if len(points) < cfg.num_points: # Query all points within the cloud queried_idx = self.input_trees[split][cloud_idx].query(pick_point, k=len(points))[1][0] else: # Query the predefined number of points queried_idx = self.input_trees[split][cloud_idx].query(pick_point, k=cfg.num_points)[1][0] # Shuffle index queried_idx = DP.shuffle_idx(queried_idx) # Get corresponding points and colors based on the index queried_pc_xyz = points[queried_idx] queried_pc_xyz = queried_pc_xyz - pick_point queried_pc_colors = self.input_colors[split][cloud_idx][queried_idx] queried_pc_labels = self.input_labels[split][cloud_idx][queried_idx] # Update the possibility of the selected points dists = np.sum(np.square((points[queried_idx] - pick_po
最新发布
04-04
将以下代码转换为python:function newpop=zmutate(pop,popsize,pm1,pm2,fitness1,M,N,Tn0,Tn1,Q,ST0,maxT,t,maxgen,LCR,ECR,MCR,FC,ICR) %M为辅助坑道数量;N为单元数 x=pop(:,1:2*M+1);%分段点位置 y=pop(:,2*M+2:4*M+2);%是否选择该分段点 z=pop(:,4*M+3:6*M+4);%开挖方向 W=pop(:,6*M+5:8*M+6);%作业班次 lenx=length(x(1,:)); leny=length(y(1,:)); lenz=length(z(1,:)); lenW=length(W(1,:)); avefit=sum(fitness1)/popsize; worstfit=min(fitness1); % sumy=sum(y); % lenz=sumy+1; % lenW=sumy+1; for i=1:popsize %选择popsize次,每次选择一个,输出一个 %随机选择一个染色体 pick=rand; while pick==0 pick=rand; end index=ceil(pick*popsize); f1=fitness1(index); if f1<=avefit % pm=(exp(-t/maxgen))*(pm1-(pm1-pm2)*(f1-avefit)/max(fitness1)-avefit); pm=1/(1+exp(t/maxgen))*(pm1-(pm1-pm2)*(f1-avefit)/max(fitness1)-avefit); else % pm=(exp(-t/maxgen))*pm1; pm=1/(1+exp(t/maxgen))*pm1; end pick=rand; while pick==0 pick=rand; end if pick>pm continue; end % flag0=0; % while(flag0==0) %随机选择变异位置 pick1=rand; pick2=rand; pick3=rand; pick4=rand; while pick1*pick2*pick3*pick4==0 pick1=rand; pick2=rand; pick3=rand; pick4=rand; end posx=ceil(pick1*lenx); posy=ceil(pick2*leny); %x,y变异 randx=randi([1,N-1]); while ismember(randx,x(index,:)) randx=randi([1,N-1]); end b=x(index,posx); x(index,posx)=randx; a=[0 1]; c=y(index,posy); y(index,posy)=setxor(y(index,posy),a); %z,W变异 posz=ceil(pick3*lenz); posW=ceil(pick4*lenW); d=z(index,posz); z(index,posz)=setxor(z(index,posz),a); randW=randi([1,3]); while randW==W(index,posW) randW=randi([1,3]); end e=W(index,posW); W(index,posW)=randW; mpop=[x(index,:),y(index,:),z(index,:),W(index,:)]; mtime=ztime(mpop,M,N,Tn0,Tn1,Q,ST0); mutfit=zcost(mpop,M,N,mtime(:,1),mtime(:,2:2*M+3),mtime(:,2*M+4:2*M+2+N),LCR,ECR,MCR,FC,ICR,Q); if mtime(:,1)>maxT||mutfit<=worstfit x(index,posx)=b; y(index,posy)=c; z(index,posz)=d; W(index,posW)=e; end end newpop=[x,y,z,W]; end
05-26
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值