An Inline Function is As Fast As a Macro(《Using the GNU Compiler Collection (GCC)》)

本文详细介绍了GCC中内联函数的使用方法及其对程序性能的影响。通过内联函数可以减少函数调用开销,提高执行速度,并且在某些情况下允许编译器在编译时进行优化。文章还讨论了内联函数的限制条件以及如何使用GCC选项来控制内联行为。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

By declaring a function inline, you can direct GCC tointegrate that function's code into the code for its callers. Thismakes execution faster by eliminating the function-call overhead; inaddition, if any of the actual argument values are constant, their knownvalues may permit simplifications at compile time so that not all of theinline function's code needs to be included. The effect on code size isless predictable; object code may be larger or smaller with functioninlining, depending on the particular case. Inlining of functions is anoptimization and it really “works” only in optimizing compilation. Ifyou don't use -O, no function is really inline.

Inline functions are included in the ISO C99 standard, but there arecurrently substantial differences between what GCC implements and whatthe ISO C99 standard requires.

To declare a function inline, use the inline keyword in itsdeclaration, like this:

     inline int
     inc (int *a)
     {
       (*a)++;
     }

(If you are writing a header file to be included in ISO C programs, write__inline__ instead of inline. See Alternate Keywords.) You can also make all “simple enough” functions inline with the option-finline-functions.

Note that certain usages in a function definition can make it unsuitablefor inline substitution. Among these usages are: use of varargs, use ofalloca, use of variable sized data types (see Variable Length),use of computed goto (see Labels as Values), use of nonlocal goto,and nested functions (see Nested Functions). Using -Winlinewill warn when a function marked inline could not be substituted,and will give the reason for the failure.

Note that in C and Objective-C, unlike C++, the inline keyworddoes not affect the linkage of the function.

GCC automatically inlines member functions defined within the classbody of C++ programs even if they are not explicitly declaredinline. (You can override this with -fno-default-inline;see Options Controlling C++ Dialect.)

When a function is both inline and static, if all calls to thefunction are integrated into the caller, and the function's address isnever used, then the function's own assembler code is never referenced. In this case, GCC does not actually output assembler code for thefunction, unless you specify the option -fkeep-inline-functions. Some calls cannot be integrated for various reasons (in particular,calls that precede the function's definition cannot be integrated, andneither can recursive calls within the definition). If there is anonintegrated call, then the function is compiled to assembler code asusual. The function must also be compiled as usual if the programrefers to its address, because that can't be inlined.

When an inline function is not static, then the compiler must assumethat there may be calls from other source files; since a global symbol canbe defined only once in any program, the function must not be defined inthe other source files, so the calls therein cannot be integrated. Therefore, a non-static inline function is always compiled on itsown in the usual fashion.

If you specify both inline and extern in the functiondefinition, then the definition is used only for inlining. In no caseis the function compiled on its own, not even if you refer to itsaddress explicitly. Such an address becomes an external reference, asif you had only declared the function, and had not defined it.

This combination of inline and extern has almost theeffect of a macro. The way to use it is to put a function definition ina header file with these keywords, and put another copy of thedefinition (lacking inline and extern) in a library file. The definition in the header file will cause most calls to the functionto be inlined. If any uses of the function remain, they will refer tothe single copy in the library.

Since GCC eventually will implement ISO C99 semantics forinline functions, it is best to use static inline onlyto guarantee compatibility. (Theexisting semantics will remain available when -std=gnu89 isspecified, but eventually the default will be -std=gnu99 andthat will implement the C99 semantics, though it does not do so yet.)

GCC does not inline any functions when not optimizing unless you specifythe `always_inline' attribute for the function, like this:

     /* Prototype.  */
     inline void foo (const char) __attribute__((always_inline));
内容概要:该研究通过在黑龙江省某示范村进行24小时实地测试,比较了燃煤炉具与自动/手动进料生物质炉具的污染物排放特征。结果显示,生物质炉具相比燃煤炉具显著降低了PM2.5、CO和SO2的排放(自动进料分别降低41.2%、54.3%、40.0%;手动进料降低35.3%、22.1%、20.0%),但NOx排放未降低甚至有所增加。研究还发现,经济性和便利性是影响生物质炉具推广的重要因素。该研究不仅提供了实际排放数据支持,还通过Python代码详细复现了排放特征比较、减排效果计算和结果可视化,进一步探讨了燃料性质、动态排放特征、碳平衡计算以及政策建议。 适合人群:从事环境科学研究的学者、政府环保部门工作人员、能源政策制定者、关注农村能源转型的社会人士。 使用场景及目标:①评估生物质炉具在农村地区的推广潜力;②为政策制定者提供科学依据,优化补贴政策;③帮助研究人员深入了解生物质炉具的排放特征和技术改进方向;④为企业研发更高效的生物质炉具提供参考。 其他说明:该研究通过大量数据分析和模拟,揭示了生物质炉具在实际应用中的优点和挑战,特别是NOx排放增加的问题。研究还提出了多项具体的技术改进方向和政策建议,如优化进料方式、提高热效率、建设本地颗粒厂等,为生物质炉具的广泛推广提供了可行路径。此外,研究还开发了一个智能政策建议生成系统,可以根据不同地区的特征定制化生成政策建议,为农村能源转型提供了有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值