poj 1180 Batch Scheduling(DP-单调性优化)

本文详细探讨了POJ 1180批量调度问题的解决方案,重点介绍了如何利用动态规划(DP)结合单调性优化和斜率优化来提高算法效率。通过实例分析,阐述了这些优化技术在解决实际问题中的应用,旨在帮助读者深入理解并掌握这类问题的求解策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Batch Scheduling
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 3145 Accepted: 1442

Description

There is a sequence of N jobs to be processed on one machine. The jobs are numbered from 1 to N, so that the sequence is 1,2,..., N. The sequence of jobs must be partitioned into one or more batches, where each batch consists of consecutive jobs in the sequence. The processing starts at time 0. The batches are handled one by one starting from the first batch as follows. If a batch b contains jobs with smaller numbers than batch c, then batch b is handled before batch c. The jobs in a batch are processed successively on the machine. Immediately after all the jobs in a batch are processed, the machine outputs the results of all the jobs in that batch. The output time of a job j is the time when the batch containing j finishes. 

A setup time S is needed to set up the machine for each batch. For each job i, we know its cost factor Fi and the time Ti required to process it. If a batch contains the jobs x, x+1,... , x+k, and starts at time t, then the output time of every job in that batch is t + S + (Tx + Tx+1 + ... + Tx+k). Note that the machine outputs the results of all jobs in a batch at the same time. If the output time of job i is Oi, its cost is Oi * Fi. For example, assume that there are 5 jobs, the setup time S = 1, (T1, T2, T3, T4, T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) = (3, 2, 3, 3, 4). If the jobs are partitioned into three batches {1, 2}, {3}, {4, 5}, then the output times (O1, O2, O3, O4, O5) = (5, 5, 10, 14, 14) and the costs of the jobs are (15, 10, 30, 42, 56), respectively. The total cost for a partitioning is the sum of the costs of all jobs. The total cost for the example partitioning above is 153. 

You are to write a program which, given the batch setup time and a sequence of jobs with their processing times and cost factors, computes the minimum possible total cost. 

Input

Your program reads from standard input. The first line contains the number of jobs N, 1 <= N <= 10000. The second line contains the batch setup time S which is an integer, 0 <= S <= 50. The following N lines contain information about the jobs 1, 2,..., N in that order as follows. First on each of these lines is an integer Ti, 1 <= Ti <= 100, the processing time of the job. Following that, there is an integer Fi, 1 <= Fi <= 100, the cost factor of the job.

Output

Your program writes to standard output. The output contains one line, which contains one integer: the minimum possible total cost.

Sample Input

5
1
1 3
3 2
4 3
2 3
1 4

Sample Output

153

题意:N个任务(按顺序编号1——N),1台机器。告诉你完成每个任务需要的时间Ti和完成每个任务的花费有关因素Fi。要你把这些任务分n(任意)批完成(同一批必须是相邻的),同一批任务完成的时间点相同。开始每一批任务之前需要启动机器,时间为S。每个任务的花费是完成的时间点t*Fi。
例如:
ID   1   2   3   4
T = {1 , 2 , 3 , 4};
F = {5 , 6 , 7 , 8};
S = 1;
把任务分成{1,2}、{3}、{4};
第一批完成花费:(S+T1+T2)*(F1+F2) = (1+1+2)*(5+6) = 44;
第二批完成花费:(S+T1+T2+S+T3)*F3 = (1+1+2+1+3)*7 = 56;
第三批完成花费:(S+T1+T2+S+T3+S+T4)*F4 = (1+1+2+1+3+1+4)*8 = 104;
总花费:44+56+104 = 204.
求最少花费。

思路:



#include <iostream>
#include <cstdio>
using namespace std;

const int maxn = 10010;
int sumT[maxn] , sumF[maxn] , que[maxn] , dp[maxn] , head , tail , N , S;

void initial(){
    for(int i = 0; i < maxn; i++){
        sumT[i] = 0;
        sumF[i] = 0;
        que[i] = 0;
        dp[i] = 0;
    }
    head = 0;
    tail = 0;
}

void readcase(){
    scanf("%d" , &S);
    for(int i = 0; i < N; i++){
        scanf("%d%d" , &sumT[i] , &sumF[i]);
    }
    for(int i = N-1; i >= 0; i--){
        sumT[i] += sumT[i+1];
        sumF[i] += sumF[i+1];
    }
}

void computing(){
    que[tail] = N;
    for(int i = N-1; i >= 0; i--){
        while(tail>head){
            int j = que[head+1] , k = que[head];
            if(dp[k]-sumT[k]*sumF[i]>=dp[j]-sumT[j]*sumF[i]) head++;
            else break;
        }
        dp[i] = dp[que[head]]+(S+sumT[i]-sumT[que[head]])*sumF[i];
        while(tail>head){
            int j = que[tail] , k = que[tail-1];
            if((dp[i]-dp[j])*(sumT[j]-sumT[k])<=(dp[j]-dp[k])*(sumT[i]-sumT[j])) tail--;
            else break;
        }
        que[++tail] = i;
    }
    printf("%d\n" , dp[0]);
}

int main(){
    while(scanf("%d" , &N) != EOF){
        initial();
        readcase();
        computing();
    }
    return 0;
}


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值