Integer Divisibility(LightOJ-1078)

本文探讨了一种使用同余定理解决数学问题的方法,具体为找到一个整数n的倍数,该倍数仅由指定数字构成,并确定这个倍数的位数。通过实例解释了算法思路,提供了源代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description

If an integer is not divisible by 2 or 5, some multiple of that number in decimal notation is a sequence of only a digit. Now you are given the number and the only allowable digit, you should report the number of digits of such multiple.

For example you have to find a multiple of 3 which contains only 1's. Then the result is 3 because is 111 (3-digit) divisible by 3. Similarly if you are finding some multiple of 7 which contains only 3's then, the result is 6, because 333333 is divisible by 7.

Input

Input starts with an integer T (≤ 300), denoting the number of test cases.

Each case will contain two integers n (0 < n ≤ 106 and n will not be divisible by 2 or 5) and the allowable digit (1 ≤ digit ≤ 9).

Output

For each case, print the case number and the number of digits of such multiple. If several solutions are there; report the minimum one.

Examples

Input

3
3 1
7 3
9901 1

Output

Case 1: 3
Case 2: 6
Case 3: 12

题意:t 组数据,每组给出两个数 n 和 m,让 m 变为 mm、mmm...,问当 m 变为几位数时恰好能整除 n

思路:同余定理

实际是考察同余定理,对于两个数 A、B,有:

  • (A + B) mod M = ( A mod M + B mod M ) mod M
  • (A * B) mod M = ((A mod M) *( B mod M)) mod M  

因此,令 A = m,每次让 A*10  后再加 m 然后 mod n,直到能整除为止

Source Program

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<deque>
#include<vector>
#include<set>
#include<map>
#define PI acos(-1.0)
#define E 1e-6
#define INF 0x3f3f3f3f
#define N 100001
#define LL long long
const int MOD=1e9+7;
const int dx[]={-1,1,0,0};
const int dy[]={0,0,-1,1};
using namespace std;

int main(){
    int t;
    scanf("%d",&t);
    int Case=1;
    while(t--){
        LL n,m;
        scanf("%lld%lld",&n,&m);

        int temp=m;
        int res=1;
        while(temp%n){
            temp=(temp*10+m)%n;
            res++;
        }

        printf("Case %d: %lld\n",Case++,res);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值