Balanced Number(HDU-3709)

本文介绍了一种通过动态规划算法解决平衡数计数问题的方法。平衡数是指可以在某个位上找到支点,使得该位左侧所有数乘以其到支点的距离之和等于右侧对应和的非负整数。文章提供了一个C++实现示例,用于计算给定区间内平衡数的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description

A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. More specifically, imagine each digit as a box with weight indicated by the digit. When a pivot is placed at some digit of the number, the distance from a digit to the pivot is the offset between it and the pivot. Then the torques of left part and right part can be calculated. It is balanced if they are the same. A balanced number must be balanced with the pivot at some of its digits. For example, 4139 is a balanced number with pivot fixed at 3. The torqueses are 4*2 + 1*1 = 9 and 9*1 = 9, for left part and right part, respectively. It's your job
to calculate the number of balanced numbers in a given range [x, y].

Input 

The input contains multiple test cases. The first line is the total number of cases T (0 < T ≤ 30). For each case, there are two integers separated by a space in a line, x and y. (0 ≤ x ≤ y ≤ 1018).

Output

For each case, print the number of balanced numbers in the range [x, y] in a line.

Sample Input

2
0 9
37604 24324

Sample Output

10
897

题意:给出区间 [l,r] 内平衡数的个数,平衡数是指,以某位作为支点,此位左边的 数字*距离 的和与右边相等 

思路:以 dp[pos][x][sta] 代表第pos位的数支点是x,目前力矩为sta的数的个数,对于每一位,以此位为支点计算力矩,然后判断这个数是否为平衡数

Source Program

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<ctime>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 21
#define MOD 10007
#define E 1e-6
typedef long long LL;
using namespace std;
int bit[N];
LL dp[N][N][N*100];
LL dfs(int pos,int x,int sta,bool limit)
{
    if(pos<=0)
        return sta==0;
    if(sta<0)
        return 0;
    if(!limit&&dp[pos][x][sta]!=-1)
        return dp[pos][x][sta];

    int res=0;
    int up=limit?bit[pos]:9;
    for(int i=0;i<=up;i++)
    {
        int next=sta+i*(pos-x);
        res+=dfs(pos-1,x,next,limit&&(i==up));
    }
    if(!limit)
        dp[pos][x][sta]=res;

    return res;
}
LL solve(LL x)
{
    int len=0;
    while(x)
    {
        bit[++len]=x%10;
        x/=10;
    }

    LL sum=0;
    for(int i=1;i<=len;i++){
        sum+=dfs(len,i,0,true);
    }
    return sum-(len-1);//减去 00、000 、0000...的情况
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        LL left,right;
        scanf("%lld%lld",&left,&right);

        memset(dp,-1,sizeof(dp));
        printf("%lld\n",solve(right)-solve(left-1));
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值