Palindromic Twist(CF-1027A)

本文探讨了一个有趣的问题,即如何通过将字符串中每个字符变为字母表中的前一个或后一个字符来形成回文串。特别关注了'A'和'Z'的特殊情况,并提供了一种检查方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description

You are given a string ss consisting of nn lowercase Latin letters. nn is even.

For each position i (1≤i≤n) in string s you are required to change the letter on this position either to the previous letter in alphabetic order or to the next one (letters 'a' and 'z' have only one of these options). Letter in every position must be changed exactly once.

For example, letter 'p' should be changed either to 'o' or to 'q', letter 'a' should be changed to 'b' and letter 'z' should be changed to 'y'.

That way string "codeforces", for example, can be changed to "dpedepqbft" ('c' →→ 'd', 'o' →→ 'p', 'd' →→ 'e', 'e' →→ 'd', 'f' →→ 'e', 'o' →→ 'p', 'r' →→ 'q', 'c' →→ 'b', 'e' →→ 'f', 's' →→ 't').

String ss is called a palindrome if it reads the same from left to right and from right to left. For example, strings "abba" and "zz" are palindromes and strings "abca" and "zy" are not.

Your goal is to check if it's possible to make string ss a palindrome by applying the aforementioned changes to every position. Print "YES" if string ss can be transformed to a palindrome and "NO" otherwise.

Each testcase contains several strings, for each of them you are required to solve the problem separately.

Input

The first line contains a single integer T (1≤T≤50) — the number of strings in a testcase.

Then 2T lines follow — lines (2i−1) and 2i of them describe the ii-th string. The first line of the pair contains a single integer nn (2≤n≤100, nn is even) — the length of the corresponding string. The second line of the pair contains a string s, consisting of nn lowercase Latin letters.

Output

Print T lines. The i-th line should contain the answer to the i-th string of the input. Print "YES" if it's possible to make the i-th string a palindrome by applying the aforementioned changes to every position. Print "NO" otherwise.

Examples

Input

5
6
abccba
2
cf
4
adfa
8
abaazaba
2
ml

Output

YES
NO
YES
NO
NO

题意:给出一个字符串,每个字母都能变成其相邻字母,但A只能变成B,Z只能变成Y,判断给出的字符串每个字母改变时能否变成回文串

思路:特判一下 A、Z 的情况,其余的情况直接判断对应位是否相差两位即可

Source Program

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<ctime>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 5000001
#define MOD 1e9+7
#define E 1e-6
#define LL long long
using namespace std;
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        int n;
        string str;
        cin>>n;
        cin>>str;

        int flag=1;
        for(int i=0,j=n-1;i<n/2;i++,j--)
        {
            if(str[i]=='a')
            {
                if(str[j]!='a'&&str[j]!='b'&&str[j]!='c')
                {
                    flag=0;
                    break;
                }
            }

            if(str[i]=='z')
            {
                if(str[j]!='z'&&str[j]!='y'&&str[j]!='x')
                {
                    flag=0;
                    break;
                }
            }

            int temp=abs(str[i]-str[j]);
            if(temp>2||temp==1)
            {
                flag=0;
                break;
            }
        }

        if(flag)
            cout<<"YES"<<endl;
        else
            cout<<"NO"<<endl;
    }

    return 0;
}

 

### 关于回文子序列的算法及其示例 #### 定义与概念 回文是指正读和反读都相同的字符序列。对于给定字符串中的任意字符组合形成的子序列,如果该子序列满足上述条件,则称为回文子序列。 #### 动态规划求解最长回文子序列 为了找到一个字符串中最长的回文子序列,可以采用动态规划的方法来解决这个问题。设 `dp[i][j]` 表示从第 i 到 j 的子串内的最长回文子序列长度: - 当 s[i]==s[j] 时, dp[i][j]=dp[i+1][j−1]+2; - 否则, dp[i][j]=max(dp[i+1][j],dp[i][j−1]). 最终的结果保存在 `dp[0][len(s)-1]` 中[^3]. ```python def longest_palindromic_subseq(s: str) -> int: n = len(s) # 创建二维数组用于存储中间结果 dp = [[0]*n for _ in range(n)] # 初始化单个字符的情况 for i in range(n): dp[i][i] = 1 # 填充表格 for length in range(2, n + 1): for start in range(n - length + 1): end = start + length - 1 if s[start] == s[end]: dp[start][end] = dp[start+1][end-1] + 2 else: dp[start][end] = max(dp[start+1][end], dp[start][end-1]) return dp[0][-1] ``` 此方法的时间复杂度为 O(),空间复杂度同样为 O(). #### 枚举所有可能的回文子序列 除了寻找最长的回文子序列外,还可以通过枚举的方式找出所有的不同回文子序列。这种方法适用于较短的输入字符串,并且可以通过位掩码技术实现高效的遍历。 ```python from collections import defaultdict def count_distinct_palindrome_subsequences(text: str) -> list[str]: results = set() memo = {} def backtrack(start=0, path=""): nonlocal text, results, memo key = (start, path) if key not in memo: temp_set = {path} if path == path[::-1] else {} for index in range(start, len(text)): new_path = path + text[index] if new_path == new_path[::-1]: temp_set.add(new_path) temp_set |= backtrack(index + 1, new_path) memo[key] = temp_set results.update(memo[(start, path)]) return memo[(start, path)] backtrack() return sorted(list(results)) ``` 这段代码会返回按字典序排列的不同回文子序列列表.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值