Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence.
For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5Sample Output
Case 1:
14 1 4
Case 2:
7 6 6
Source Program
#include<cstdio>
#include<iostream>
#define N 100001
using namespace std;
int main()
{
int t;
int n;
int num[N],dp[N];
int max_num,sum;
int pos_begin,pos_end;
int k,i;
scanf("%d",&t);
for(k=1;k<=t;k++)
{
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d",&num[i]);
max_num=-1001;
for(i=1;i<=n;i++)
{
dp[i]=max(num[i],dp[i-1]+num[i]);
if(max_num<dp[i])
{
max_num=dp[i];//记录最大值
pos_end=i;//记录最后位置
}
}
sum=max_num;
for(i=pos_end;i>0;i--)//从最后位置开始
{
sum-=num[i];//逐个递减
if(sum==0)//减到0停止
{
pos_begin=i;//记录开始位置
break;
}
}
printf("Case %d:\n%d %d %d\n",k,max_num,pos_begin,pos_end);
if(k<t)//格式控制
printf("\n");
}
return 0;
}