问题描述:
Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.
Note:
- You may assume the interval's end point is always bigger than its start point.
- Intervals like [1,2] and [2,3] have borders "touching" but they don't overlap each other.
示例:
Input: [ [1,2], [2,3], [3,4], [1,3] ] Output: 1 Explanation: [1,3] can be removed and the rest of intervals are non-overlapping.
Input: [ [1,2], [1,2], [1,2] ] Output: 2 Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.
Input: [ [1,2], [2,3] ] Output: 0 Explanation: You don't need to remove any of the intervals since they're already non-overlapping.
问题分析:
这里我们采用贪心策略,按照start排序,尽可能使两个相邻的interval不重叠,若是重叠,选择end小的那个interval留下,大的则remove掉。
过程详见代码:
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
class Solution {
public:
int eraseOverlapIntervals(vector<Interval>& intervals) {
sort(intervals.begin(), intervals.end(),
[](Interval& a, Interval&b){
if (a.start != b.start) return a.start < b.start;
else return a.end < b.end;
});
int res = 0,end = INT_MIN;
for (int i = 0; i < intervals.size(); i++)
{
if (intervals[i].start >= end)
{
end = intervals[i].end;
}
else
{
if (intervals[i].end <= end)
{
end = end = intervals[i].end;
}
res++;
}
}
return res;
}
};
本文介绍了一种通过贪心策略解决区间去重问题的方法。给定一系列区间,目标是最小化需要移除的区间数量,以确保剩余区间互不重叠。文章通过示例详细解释了算法的具体实现过程。
729

被折叠的 条评论
为什么被折叠?



