Caffe Siamese Track.

博客提及了 Train 网络和 Test 网络,推测是关于网络的训练与测试相关内容,属于信息技术领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Train 网络 

name: "Face_Track"
layer {
  name: "data_face"
  type: "Data"
  top: "data_face"
  include {
    phase: TRAIN
  }
  transform_param {
		mean_value: 104
		mean_value: 117
		mean_value: 124
		scale: 0.0078125
  }
  data_param {
    source: "lmdb_face/train_data_npd"
    batch_size: 64
    backend: LMDB
  }
}
layer {
  name: "data_face"
  type: "Data"
  top: "data_face"
  include {
    phase: TEST
  }
  transform_param {
		mean_value: 104
		mean_value: 117
		mean_value: 124
		scale: 0.0078125
  }
  data_param {
    source: "lmdb_face/test_data_npd"
    batch_size: 64
    backend: LMDB
  }
}



layer {
  name: "data_face_around"
  type: "Data"
  top: "data_face_around"
  include {
    phase: TRAIN
  }
  transform_param {
		mean_value: 104
		mean_value: 117
		mean_value: 124
		scale: 0.0078125
  }
  data_param {
    source: "lmdb_face_around/train_data_npd"
    batch_size: 64
    backend: LMDB
  }
}

layer {
  name: "data_around_label"
  type: "Data"
  top: "data_around_label"
  include {
    phase: TRAIN
  }
  data_param {
    source: "lmdb_face_around/train_label_npd"
    batch_size: 64
    backend: LMDB
  }
}

layer {
  name: "data_face_around"
  type: "Data"
  top: "data_face_around"
  include {
    phase: TEST
  }
  transform_param {
		mean_value: 104
		mean_value: 117
		mean_value: 124
		scale: 0.0078125
  }
  data_param {
    source: "lmdb_face_around/test_data_npd"
    batch_size: 64
    backend: LMDB
  }
}
layer {
  name: "data_around_label"
  type: "Data"
  top: "data_around_label"
  include {
    phase: TEST
  }
  data_param {
    source: "lmdb_face_around/test_label_npd"
    batch_size: 64
    backend: LMDB
  }
}

layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data_face"
  top: "conv1"
  param {
	name: "conv1_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv1_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
    num_output: 16
    kernel_size: 3
    stride: 2
	pad: 1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prelu1"
  type: "PReLU"
  bottom: "conv1"
  top: "conv1"
  param {
	name: "prelu1_p"
  }
}

layer {
  name: "conv2"
  type: "Convolution"
  bottom: "conv1"
  top: "conv2"
  param {
	name: "conv2_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv2_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
    num_output: 32
    kernel_size: 3
    stride: 2
	pad:1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

layer {
  name: "prelu2"
  type: "PReLU"
  bottom: "conv2"
  top: "conv2"
  param {
	name: "prelu2_p"
  }
}

layer {
  name: "conv3"
  type: "Convolution"
  bottom: "conv2"
  top: "conv3"
  param {
	name: "conv3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv3_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
	num_output: 32
	kernel_size: 3
    stride: 2
	pad:1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prelu3"
  type: "PReLU"
  bottom: "conv3"
  top: "conv3"
  param {
	name: "prelu3_p"
  }
}

layer {
  name: "conv4"
  type: "Convolution"
  bottom: "conv3"
  top: "conv4"
  param {
	name: "conv4_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv4_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
	num_output: 64
	kernel_size: 3
    stride: 2
	pad:1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prelu4"
  type: "PReLU"
  bottom: "conv4"
  top: "conv4"
  param {
	name: "prelu4_p"
  }
}

layer {
  name: "con5"
  type: "Convolution"
  bottom: "conv4"
  top: "conv5"
  param {
	name: "conv5_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv5_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
	num_output: 128
	kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}






layer {
  name: "conv1_P"
  type: "Convolution"
  bottom: "data_face_around"
  top: "conv1_P"
  param {
	name: "conv1_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv1_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
    num_output: 16
    kernel_size: 3
    stride: 2
	pad: 1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prelu1_p"
  type: "PReLU"
  bottom: "conv1_P"
  top: "conv1_P"
  param {
	name: "prelu1_p"
  }
}

layer {
  name: "conv2_P"
  type: "Convolution"
  bottom: "conv1_P"
  top: "conv2_P"
  param {
	name: "conv2_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv2_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
    num_output: 32
    kernel_size: 3
    stride: 2
	pad:1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

layer {
  name: "prelu2_p"
  type: "PReLU"
  bottom: "conv2_P"
  top: "conv2_P"
  param {
	name: "prelu2_p"
  }
}

layer {
  name: "conv3_p"
  type: "Convolution"
  bottom: "conv2_P"
  top: "conv3_p"
  param {
	name: "conv3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv3_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
	num_output: 32
	kernel_size: 3
    stride: 2
	pad:1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prelu3_p"
  type: "PReLU"
  bottom: "conv3_p"
  top: "conv3_p"
  param {
	name: "prelu3_p"
  }
}

layer {
  name: "conv4_p"
  type: "Convolution"
  bottom: "conv3_p"
  top: "conv4_p"
  param {
	name: "conv4_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv4_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
	num_output: 64
	kernel_size: 3
    stride: 2
	pad:1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prelu4_p"
  type: "PReLU"
  bottom: "conv4_p"
  top: "conv4_p"
  param {
	name: "prelu4_p"
  }
}

layer {
  name: "con5_p"
  type: "Convolution"
  bottom: "conv4_p"
  top: "con5_p"
  param {
	name: "conv5_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv5_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
	num_output: 128
	kernel_size: 3
    stride: 1
	pad:1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

layer {
	name: "tile_h"
	type: "Tile"
	bottom: "conv5"
	top: "tile_h"
	tile_param{
	  axis :2
	  tiles :8
	}
}
layer {
	name: "tile_v"
	type: "Tile"
	bottom: "tile_h"
	top: "tile_v"
	tile_param{
	  axis :3
	  tiles :8
	}
}

layer {
  name: "eltwise"
  type: "Eltwise"
  bottom: "tile_v"
  bottom: "con5_p"
  top: "eltwise"
  eltwise_param{
     operation:PROD
  }
}


layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "eltwise"
  top: "ip1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 64
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu_fc1"
  type: "PReLU"
  bottom: "ip1"
  top: "ip1"
}
layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 4
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "loss"
  type: "AbsoluteLoss"
  #type:"EuclideanLoss"
  bottom: "ip2"
  bottom: "data_around_label"
  top: "loss"
}

layer {
  name: "accuracy"
  type: "AbsoluteLoss"
  #type:"EuclideanLoss"
  bottom: "ip2"
  bottom: "data_around_label"
  top: "accuracy"
  include {
    phase: TEST
  }
}



Test 网络

name: "Face_Track"
layer
{  
  name: "data"  
  type: "MemoryData"
  top: "data_face"
  top: "label1"
  memory_data_param   
  {
    batch_size: 1
    channels: 3
    height: 48
    width: 48
  }
  transform_param {
		mean_value: 104
		mean_value: 117
		mean_value: 124
		scale: 0.0078125
  }
}

layer
{  
  name: "data2"  
  type: "MemoryData"
  top: "data_face_around"
  top: "label2"
  memory_data_param   
  {
    batch_size: 1
    channels: 3
    height: 120
    width: 120
  }
  transform_param {
		mean_value: 104
		mean_value: 117
		mean_value: 124
		scale: 0.0078125
  }
}


layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data_face"
  top: "conv1"
  param {
	name: "conv1_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv1_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
    num_output: 16
    kernel_size: 3
    stride: 2
	pad: 1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prelu1"
  type: "PReLU"
  bottom: "conv1"
  top: "conv1"
  param {
	name: "prelu1_p"
  }
}

layer {
  name: "conv2"
  type: "Convolution"
  bottom: "conv1"
  top: "conv2"
  param {
	name: "conv2_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv2_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
    num_output: 32
    kernel_size: 3
    stride: 2
	pad:1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

layer {
  name: "prelu2"
  type: "PReLU"
  bottom: "conv2"
  top: "conv2"
  param {
	name: "prelu2_p"
  }
}

layer {
  name: "conv3"
  type: "Convolution"
  bottom: "conv2"
  top: "conv3"
  param {
	name: "conv3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv3_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
	num_output: 32
	kernel_size: 3
    stride: 2
	pad:1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prelu3"
  type: "PReLU"
  bottom: "conv3"
  top: "conv3"
  param {
	name: "prelu3_p"
  }
}

layer {
  name: "conv4"
  type: "Convolution"
  bottom: "conv3"
  top: "conv4"
  param {
	name: "conv4_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv4_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
	num_output: 64
	kernel_size: 3
    stride: 2
	pad:1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prelu4"
  type: "PReLU"
  bottom: "conv4"
  top: "conv4"
  param {
	name: "prelu4_p"
  }
}

layer {
  name: "con5"
  type: "Convolution"
  bottom: "conv4"
  top: "conv5"
  param {
	name: "conv5_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv5_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
	num_output: 128
	kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}






layer {
  name: "conv1_P"
  type: "Convolution"
  bottom: "data_face_around"
  top: "conv1_P"
  param {
	name: "conv1_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv1_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
    num_output: 16
    kernel_size: 3
    stride: 2
	pad: 1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prelu1_p"
  type: "PReLU"
  bottom: "conv1_P"
  top: "conv1_P"
  param {
	name: "prelu1_p"
  }
}

layer {
  name: "conv2_P"
  type: "Convolution"
  bottom: "conv1_P"
  top: "conv2_P"
  param {
	name: "conv2_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv2_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
    num_output: 32
    kernel_size: 3
    stride: 2
	pad:1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

layer {
  name: "prelu2_p"
  type: "PReLU"
  bottom: "conv2_P"
  top: "conv2_P"
  param {
	name: "prelu2_p"
  }
}

layer {
  name: "conv3_p"
  type: "Convolution"
  bottom: "conv2_P"
  top: "conv3_p"
  param {
	name: "conv3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv3_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
	num_output: 32
	kernel_size: 3
    stride: 2
	pad:1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prelu3_p"
  type: "PReLU"
  bottom: "conv3_p"
  top: "conv3_p"
  param {
	name: "prelu3_p"
  }
}

layer {
  name: "conv4_p"
  type: "Convolution"
  bottom: "conv3_p"
  top: "conv4_p"
  param {
	name: "conv4_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv4_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
	num_output: 64
	kernel_size: 3
    stride: 2
	pad:1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prelu4_p"
  type: "PReLU"
  bottom: "conv4_p"
  top: "conv4_p"
  param {
	name: "prelu4_p"
  }
}

layer {
  name: "con5_p"
  type: "Convolution"
  bottom: "conv4_p"
  top: "con5_p"
  param {
	name: "conv5_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
	name: "conv5_b"
    lr_mult: 2
    decay_mult: 1
  }
  convolution_param {
	num_output: 128
	kernel_size: 3
    stride: 1
	pad:1
    weight_filler {
      type: "xavier"
	}
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}

layer {
	name: "tile_h"
	type: "Tile"
	bottom: "conv5"
	top: "tile_h"
	tile_param{
	  axis :2
	  tiles :8
	}
}
layer {
	name: "tile_v"
	type: "Tile"
	bottom: "tile_h"
	top: "tile_v"
	tile_param{
	  axis :3
	  tiles :8
	}
}

layer {
  name: "eltwise"
  type: "Eltwise"
  bottom: "tile_v"
  bottom: "con5_p"
  top: "eltwise"
  eltwise_param{
     operation:PROD
  }
}


layer {
  name: "ip1"
  type: "InnerProduct"
  bottom: "eltwise"
  top: "ip1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 64
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}
layer {
  name: "relu_fc1"
  type: "PReLU"
  bottom: "ip1"
  top: "ip1"
}
layer {
  name: "ip2"
  type: "InnerProduct"
  bottom: "ip1"
  top: "ip2"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  inner_product_param {
    num_output: 4
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}



 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NineDays66

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值