机器学习界大牛林达华推荐的书籍

本文列举了机器学习与数学领域的几本重要书籍,包括《模式识别与机器学习》、《统计模式识别》、《学习与核方法》等,适合对机器学习和概率论感兴趣的读者。此外,还推荐了几本编程类书籍,如《结构与解释计算机程序》和《思考C++》,帮助程序员提升编程技能和理解算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Recommended Books

Here is a list of books which I have read and feel it is worth recommending to friends who are interested in computer science.

Machine Learning

Pattern Recognition and Machine Learning

Christopher M. Bishop

A new treatment of classic machine learning topics, such as classification, regression, and time series analysis from a Bayesian perspective. It is a must read for people who intends to perform research on Bayesian learning and probabilistic inference.

Graphical Models, Exponential Families, and Variational Inference

Martin J. Wainwright and Michael I. Jordan

It is a comprehensive and brilliant presentation of three closely related subjects: graphical models, exponential families, and variational inference. This is the best manuscript that I have ever read on this subject. Strongly recommended to everyone interested in graphical models. The connections between various inference algorithms and convex optimization is clearly explained. Note: pdf version of this book is freely available online.

Big Data: A Revolution That Will Transform How We Live, Work, and Think

Viktor Mayer-Schonberger, and Kenneth Cukier

A short but insightful manuscript that will motivate you to rethink how we should face the explosive growth of data in the new century.

Statistical Pattern Recognition (2nd/3rd Edition)

Andrew R. Webb, and Keith D. Copsey

A well written book on pattern recognition for beginners. It covers basic topics in this field, including discriminant analysis, decision trees, feature selection, and clustering -- all are basic knowledge that researchers in machine learning or pattern recognition should understand.

Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond

Bernhard Schlkopf and Alexander J. Smola

Introduction to High-Performance Scientific Computing,第二版,2014 This text evolved from a new curriculum in scientific computing that was developed to teach undergraduate science and engineering majors how to use high-performance computing systems (supercomputers) in scientific and engineering applications.Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers.The authors begin with a survey of scientific computing and then provide a review of background (numerical analysis, IEEE arithmetic, Unix, Fortran) and tools (elements of MATLAB, IDL, AVS). Next, full coverage is given to scientific visualization and to the architectures (scientific workstations and vector and parallel supercomputers) and performance evaluation needed to solve large-scale problems. The concluding section on applications includes three problems (molecular dynamics, advection, and computerized tomography) that illustrate the challenge of solving problems on a variety of computer architectures as well as the suitability of a particular architecture to solving a particular problem.Finally, since this can only be a hands-on course with extensive programming and experimentation with a variety of architectures and programming paradigms, the authors have provided a laboratory manual and supporting software via anonymous ftp.Scientific and Engineering Computation series
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值