题意:求从左上角走到右下角所经过的路径上的数字之积末尾含有最少的0
dp求出从左上角到右下角所经过的路径所含2,5最少的路径,同时检测所给数组中是否含有0,输出答案。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string.h>
#include <string>
using namespace std;
const int MAXN = 1000 + 38;
const int inf = 1000000000;
int mt[MAXN][MAXN][2];
int dp[MAXN][MAXN][2];
int path[MAXN][MAXN][2];
int temp[MAXN][MAXN];
int cal2(int x)
{
int res = 0;
while (x % 2 == 0)
{
res++;
x /= 2;
}
return res;
}
int cal5(int x)
{
int res = 0;
while (x % 5 == 0)
{
res++;
x /= 5;
}
return res;
}
void dfs(int x, int y, int k)
{
if (x == 1 && y == 1) return ;
if (x < 1 || y < 1) return ;
if (path[x][y][k])
{
dfs(x - 1, y, k);
printf("D");
}
else
{
dfs(x, y - 1, k);
printf("R");
}
}
void input()
{
int n;
while (scanf("%d", &n) != EOF)
{
int flag = 0;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
scanf("%d", &temp[i][j]);
if (temp[i][j] == 0)
{
flag = i;
continue;
}
mt[i][j][0] = cal2(temp[i][j]);
mt[i][j][1] = cal5(temp[i][j]);
}
}
for (int i = 0; i <= n; i++)
{
for (int j = 0; j <= n; j++)
{
dp[i][j][0] = dp[i][j][1] = inf; //无穷大,因为dp求小值
}
}
dp[1][1][0] = mt[1][1][0], dp[1][1][1] = mt[1][1][1]; //初始化
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
if (temp[i][j] == 0) continue;
if (i == 1 && j == 1) continue;
if (dp[i - 1][j][0] < dp[i][j - 1][0] && i > 1)
{
dp[i][j][0] = dp[i - 1][j][0] + mt[i][j][0];
path[i][j][0] = 1;
}
else
{
dp[i][j][0] = dp[i][j - 1][0] + mt[i][j][0];
path[i][j][0] = 0;
}
if (dp[i - 1][j][1] < dp[i][j - 1][1] && i > 1)
{
dp[i][j][1] = dp[i - 1][j][1] + mt[i][j][1];
path[i][j][1] = 1;
}
else
{
dp[i][j][1] = dp[i][j - 1][1] + mt[i][j][1];
path[i][j][1] = 0;
}
//cout << dp[i][j][1] << ' ';
}
//cout << endl;
}
int ans = min(dp[n][n][0], dp[n][n][1]);
int k = dp[n][n][0] < dp[n][n][1] ? 0 : 1;
if (ans > 1 && flag)
{
printf("1\n");
for (int i = 1; i < flag; i++)
{
printf("D");
}
for (int i = 1; i < n; i++)
{
printf("R");
}
for (int i = flag; i < n; i++)
{
printf("D");
}
printf("\n");
}
else
{
printf("%d\n", ans);
dfs(n, n, k);
printf("\n");
}
}
}
int main()
{
input();
return 0;
}