对之前的Dijkstra 算法的CODE进行了修改,主要是增加了一个Dijkstra类,继承自Graph,将S、C、D作为Dijkstra类的成员,并对SCD初始化过程用initalSCD方法进行重合,将原Graph类中的findShortestPath方法移动Dijkstra类中。
代码如下:
import java.util.*;
/*
* Node:
*/
class Node {
int index;
Node() {
index = 0;
}
Node(int index) {
this.index = index;
}
void dispNode() {
System.out.print(this.index);
}
}
/*
* Edge:
*/
class Edge {
int weight;
Node fromNode;
Node toNode;
Edge(){
weight = 0;
fromNode = null;
toNode = null;
}
Edge(int v, Node from, Node to)
{
weight = v;
fromNode = from;
toNode = to;
}
void dispEdge(){
System.out.print("<"+fromNode.index+","+toNode.index+":"+weight+">");
}
}
/*
* Graph
*/
class Graph {
ArrayList<Node> nodes;
ArrayList<Edge> edges;
Graph(ArrayList<Node> n, ArrayList<Edge> e){
nodes = n;
edges = e;
}
void dispGraph(){
System.out.print("Node:\t");
for(Node n:nodes){
n.dispNode();
System.out.printf(" ");
}
System.out.println();
System.out.print("Edges:\t");
for(Edge e:edges )
{
e.dispEdge();
System.out.printf(" ");
}
System.out.println();
}
void printState(ArrayList<Node> S, ArrayList<Node> C, int [] D)
{
System.out.println();
System.out.println("========================");
//display
System.out.print("S:\t{");
for(Node n: S)
System.out.print(n.index+" ");
System.out.print("}");
//display C
System.out.println();
System.out.print("C:\t{");
for (Node n: C)
System.out.print(n.index+" ");
System.out.print("}");
// display D
System.out.println();
System.out.print("D:\t[");
for (int i:D)
System.out.print(i+" ");
System.out.print("]");
System.out.println();
//display edges
//dispGraph();
}
} // _class Graph
class Dijkstra extends Graph {
ArrayList<Node> S;
ArrayList<Node> C;
int[] D;
Node v;
Dijkstra(ArrayList<Node> n, ArrayList<Edge> e) {
super(n, e);
// TODO Auto-generated constructor stub
S= new ArrayList<Node>();
C = new ArrayList<Node>();
D = new int[nodes.size()-1];
v = new Node();
}
// for get L(u,v)
int min(int i,int j){
return ((i)<(j)) ? (i):(j);
}
// Get the index of the minimal value in Array[].
// Caution: The Length of Array depends on NodeList's size.
int locMiniOf(ArrayList<Node> nodeList, int[] array)
{
// find minimal of D, for get v.
int id = 0;
int minimalOfArray = array[0];
for(int i = 1; i < nodeList.size(); i++)
minimalOfArray = min(minimalOfArray,array[i]);
// get index of minimalOfD in D[]
for(int i = 0; i < nodeList.size(); i++)
if(array[i] == minimalOfArray)
id = i;
return id;
}
void initialSCD(){
// initiate S,C,D;
// initiate S
S.add(nodes.get(0));
// initiate C
for (int i=1; i<nodes.size(); i++)
C.add(nodes.get(i));
// initiate D
int k=0;
for(Edge e:edges) {
if (e.fromNode.index == 1)
D[k++] = e.weight;
}
for (int i=0; i<D.length-1; i++)
if (D[i] == 0)
D[i] = 10000;
// print S, C, D before start.
printState(S,C,D);
System.out.println();
}
void findShortestPath() {
// initial S, C, D
initialSCD();
// start to finding.
Iterator<Node> it = C.iterator();
while(it.hasNext()) {
int id = locMiniOf(C,D);
// get v
v= C.get(id);
// print v
System.out.println("v = "+ v.index);
// update S, C
S.add(v);
C.remove(id);
// update D
int L = 0;
for (int i=0; i<C.size(); i++){
for (Edge e : edges){
if (e.fromNode.index == v.index && e.toNode.index == C.get(i).index) {
L = D[id]+ e.weight;
D[e.toNode.index-2] = min(D[e.toNode.index-2],L);
}
}
printState(S,C,D);
}
}// _while
}// _findShortestPath()
}
class GraphDemo
{
public static void main (String[] args) {
// initiate Graph
int[][] edgesMatrix = {
{0,50,30,100,10},
{0,0,0,0,0},
{0,5,0,0,0},
{0,20,50,0,3},
{0,0,0,10,0}
};
ArrayList<Node> ns = new ArrayList<Node>();
ArrayList<Edge> es = new ArrayList<Edge>();
// add each Node
for(int i=1; i<= edgesMatrix.length; i++){
Node n = new Node(i);
ns.add(n);
}
// add each edge
for(int i=0; i<edgesMatrix.length; i++)
for(int j=0; j<edgesMatrix.length; j++)
if(edgesMatrix[i][j] != 0) {
Edge e = new Edge(edgesMatrix[i][j], ns.get(i),ns.get(j));
es.add(e);
}
// create the instance of Graph
Dijkstra G = new Dijkstra(ns,es);
// display the Nodes and Edges of Graph
G.dispGraph();
// find shortest-path from Node 1 to others
// The sum of SP's weight be saved at D[]
G.findShortestPath();
}
}