昨天做大的事情应该是西安邀请赛的重现,4题;
A。字符串基本处理。
求有多少DOGE
#include <cctype>
#include <cstdio>
using namespace std;
const int maxLen = (1 << 16);
char buffer[maxLen];
int len, res;
inline bool isDOGE(int i)
{
return (toupper(buffer[i]) == 'D') &&
(toupper(buffer[i + 1]) == 'O') &&
(toupper(buffer[i + 2]) == 'G') &&
(toupper(buffer[i + 3]) == 'E');
}
void solve()
{
char ch = 0;
while (~scanf("%c", &ch)) buffer[len++] = ch;
len -= 3;
for (int i = 0; i < len; i++)
if (isDOGE(i))
res++;
printf("%d\n", res);
}
int main()
{
solve();
return 0;
}
C题
用三个数组,生成一个二维数组的图,然后二维数组是点与点的最短路径。利用的是三个公式
我用的SPFA直接把数组弄出来,然后对于数组dis每个余m,排序一下,输出第一个元素即可。
/*#pragma warning(disable:4786)
#include<iostream>
#include<algorithm>
#include<cmath>
#include<stdio.h>
#include<time.h>
#include<stdlib.h>
#include<queue>
#include<set>
#include<vector>
#include<string>
#include<ctime>
#include<string.h>
using namespace std;
//#define LL __int64
typedef long long LL;
#define INF 0x7fffffffffffffff
#define bug puts("hear!")
#define inf 0x7fffffff
#define eps 1e-10
#define N 3000000
#define FRE freopen("in.txt","r",stdin)
#define E exp(1.0)
#define mod 1000000007
LL modexp_recursion(LL a,LL b,LL n)//快速幂
{
LL t = 1;
if (b == 0)
return 1;
if (b == 1)
return a%n;
t = modexp_recursion(a, b>>1, n);
t = t*t % n;
if (b&0x1)
t = t*a % n;
return t;
}
LL phi[3000001];
LL a,b,c,d;
int quick_oula()//快速欧拉函数
{
int i,j;
for(i=1;i<3000001;i++)
phi[i]=i;
for(i=2;i<3000001;i++)
{
if(phi[i]==i)
{
for(j=i;j<3000001;j+=i)
{
phi[j]=(phi[j]/i)*(i-1);
}
}
}
}
void print(int x)//打印N进制数
{
if(x<=9)
cout<<x;
else
printf("%c",x-10+'A');
}
void change(LL n,int r){//10进制转换N进制
if(n)
{
change(n/r,r);
print(n%r);
}
}
int f(char n)//单个16进制数转10进制
{
if('A'<=n&&n<='F')
return 10+(n-'A');
else
return n-'0';
}
LL fq(char s[])//16进制数赚10进制
{
int i=0;
LL sum=0;
if(s[0]=='-')
i++;
if(s[0]=='+')
i++;
for(;s[i]!='\0';i++)
{
sum*=16;
sum+=f(s[i]);
}
return sum;
}
int main(){
int f[100000001];
LL q;
f[0]=1;
f[1]=5;
for(int i=2;i<=100000000;i++)
{
if((i-5)%6==0)
f[i]=0;
else
{
}
}
return 0;
}*/
/*
#pragma warning(disable:4786)
#include<iostream>
#include<algorithm>
#include<cmath>
#include<stdio.h>
#include<time.h>
#include<stdlib.h>
#include<queue>
#include<set>
#include<vector>
#include<string>
#include<ctime>
#include<string.h>
using namespace std;
//#define LL __int64
typedef long long ll;
#define INF 0x7fffffffffffffff
#define bug puts("hear!")
#define inf 0x7fffffff
#define eps 1e-10
#define N 3000000
#define FRE freopen("in.txt","r",stdin)
#define E exp(1.0)
#define mod 1000000007
const int maxn=1005;
const int maxm=1000005;
const ll mod1=5837501;
const ll mod2=9860381;
const ll mod3=8475871;
int n,m,x,xz,y,yz;
ll dis[maxn];
ll a[maxm],b[maxm],c[maxm],d[maxn][maxn];
bool visit[maxn];
inline ll gongshi1(int k){
return (12345 + a[k-1] * 23456 + a[k-2] * 34567 + a[k-1] * a[k-2] * 45678)% mod1;
}
inline ll gongshi2(int k)
{
return (56789 + b[k-1] * 67890 + a[k-2] * 78901 + b[k-1] * b[k-2] * 89012) % mod2;
}
void SPFA(){
for(int i=0;i<n;i++)
dis[i]=1LL<<62;
dis[0]=0;
for(int i=0;i<n;i++)
visit[i]=false;
visit[0]=true;
queue<ll>q;
q.push(0);
while(!q.empty())
{
int i=q.front();
q.pop();
visit[i]=false;
for(int j=0;j<n;j++)
{
if(dis[j]>dis[i]+d[i][j])
{
dis[j]=dis[i]+d[i][j];
if(!visit[j])
{
visit[j]=true;
q.push(j);
}
}
}
}
}
int main(){
while(~(scanf("%d %d %d %d %d %d",&n,&m,&x,&xz,&y,&yz)))
{
a[0]=x;a[1]=xz;
b[0]=y,b[1]=yz;
for(int k=2;k<n*n;k++)
{
a[k]=gongshi1(k);
b[k]=gongshi2(k);
}
for(int k=0;k<n*n;k++)
{
c[k]=(a[k] * 90123 + b[k] )%mod3 + 1;
}
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
if (i != j)
d[i][j] = c[i * n + j];
else
d[i][j] = 0;
SPFA();
for (int i = 0; i < n; i++)
dis[i] %= m;
sort(dis + 1, dis + n);
cout << dis[1] <<endl;
}
return 0;
}*/
#include <iostream>
#include <queue>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long int64;
const int maxN = 1005;
const int maxM = 1000005;
const int64 xmod = 5837501;
const int64 ymod = 9860381;
const int64 zmod = 8475871;
int n, m, n2;
int x0, x1, y0, y1;
int64 x[maxM], y[maxM], z[maxM], c[maxN][maxN];
int64 dis[maxN];
bool inqueue[maxN];
inline int64 calcx(int k)
{
return (12345 + x[k - 1] * 23456 + x[k - 2] * 34567
+ x[k - 1] * x[k - 2] * 45678) % xmod;
}
inline int64 calcy(int k)
{
return (56789 + y[k - 1] * 67890 + y[k - 2] * 78901
+ y[k - 1] * y[k - 2] * 89012) % ymod;
}
void SPFA()
{
for (int i = 0; i < n; i++)
dis[i] = 1LL << 62;
dis[0] = 0;
for (int i = 0; i < n; i++)
inqueue[i] = false;
inqueue[0] = true;
queue<int64> q; q.push(0);
while (!q.empty())
{
int i = q.front(); q.pop();
inqueue[i] = false;
for (int j = 0; j < n; j++)
if (dis[j] > dis[i] + c[i][j])
{
dis[j] = dis[i] + c[i][j];
if (!inqueue[j])
{
inqueue[j] = true;
q.push(j);
}
}
}
}
int64 solve()
{
x[0] = x0; x[1] = x1;
y[0] = y0; y[1] = y1;
for (int k = 2; k < n * n; k++)
x[k] = calcx(k), y[k] = calcy(k);
for ( int k = 0; k < n * n; k++)
z[k] = (x[k] * 90123 + y[k]) % zmod + 1;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
if (i != j)
c[i][j] = z[i * n + j];
else
c[i][j] = 0;
SPFA();
for (int i = 0; i < n; i++)
dis[i] %= m;
sort(dis + 1, dis + n);
cout << dis[1] << endl;
}
int main(){
while ( cin >> n >> m >> x0 >> x1 >> y0 >> y1 )
solve();
return 0;
}
D题 题目要求,你做一个长度为n的字符串,其中如果n>=4,那么长度为4以上的子串不能有任何一个相同。
首先肯定4位4位一生成一个子串,然后子串连接起来这么算。
那么,对于一个4位的子串,那么就是有26^4种解法。恰巧,这个就是答案。当然,这个答案后面要加上2个‘a’和一个'\0'。这个先不说
其次,对于每一个4位,当然不能全排列。一共是467976种吧。。。
看大神的题解是dfs搞,MD居然能这么搞也是学习了一下。
当然就是按照题目的限定条件深搜一下,能出来,只不过时间是700+MS
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const char* alpha = "abcdefghijklmnopqrstuvwxyz";
const int asz = 26;
const int maxN = 500000;
int maxS, len, s, state[4 * asz + 13];
char result[maxN];
int dfs(int curr, int prev)
{
if (len >= maxN) return 0;
if (curr > 4)//catch char
{
if (4 % prev == 0)
{
for (int i = 1; i <= prev; i++)
{
result[len++] = state[i];
if (len >= maxN) break;
}
}
}
else
{
int stateID = state[curr - prev];
state[curr] = stateID;
dfs(curr + 1, prev);
for (int i = stateID + 1; i < 26; i++)
{
state[curr] = i;
dfs(curr + 1, curr);
}
}
return 0;
}
inline void addStringaaa()
{
result[len] = result[len + 1] = result[len + 2] = 'a';
result[len + 3] = '\0';
maxS = len + 3;
}
void solve()
{
if (s > maxS) puts("Impossible");
else
{
for (int i = 0; i < s; i++)
printf("%c", result[i]);
puts("");
}
}
int main()
{
dfs(1, 1);
for (int i = 0; i < len; i++)
result[i] = alpha[result[i]];
addStringaaa();
while (~scanf("%d", &s))
solve();
return 0;
}
J题,摆明了是个状态压缩dp。。。
不知道大家有没有玩过传送门这个游戏,这道题就是那个意思,有几个门可以传送。就是x->y的传送,然后问你需要遍历所有的传送门需要的最短时间是多少。
dp公式就是
f[j][mask ^ (1 << (j - 1))] = min(f[j][mask ^ (1 << (j - 1))], f[i][mask] + cost[i][j]);
/*
@Suvigo
*/
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxN = 25;
const int maxM = 21;
const int inf = 500000000;
int n, m, tot, a[maxN * maxN][maxN * maxN];
int cost[maxM][maxM], f[maxM][1 << maxM];
bool bar[maxN][maxN];
char str[maxN];
pair <int, int> tunnel[maxM];
inline int encode(int x, int y)
{
return (x - 1) * n + y;
}
void DataScanner()
{
for (int i = 1; i <= n; i++) bar[i][i] = false;
tot = n * n;
for (int i = 1; i <= n; i++)
{
scanf("%s", str + 1);
for (int j = 1; j <= n; j++)
{
if (str[j]=='#') bar[i][j] = true;
else bar[i][j] = false;
}
}
int x1, x2, y1, y2;
for (int i = 1; i <= m; i++)
{
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
tunnel[i] = make_pair(encode(x1, y1), encode(x2, y2));
}
}
void Build()
{
for (int i = 1; i <= tot; i++)
for (int j = 1; j <= tot; j++)
a[i][j] = inf;
for (int i = 1; i <= tot; i++)
a[i][i] = 0;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
if (bar[i][j]) continue;
if (j < n && !bar[i][j + 1])
a[encode(i, j)][encode(i, j + 1)] = a[encode(i, j + 1)][encode(i, j)] = 1;
if (i < n && !bar[i + 1][j])
a[encode(i, j)][encode(i + 1, j)] = a[encode(i + 1, j)][encode(i, j)] = 1;
}
}
}
void Floyd()
{
for (int k = 1; k <= tot; k++)
for (int i = 1; i <= tot; i++)
for (int j = 1; j <= tot; j++)
a[i][j] = min(a[i][j], a[i][k]+a[k][j]);
}
void DP()
{
for (int i = 1; i <= m; i++)
for (int j = 1;j <= m;j++)
if (i == j) continue;
else
cost[i][j] = a[tunnel[i].second][tunnel[j].first];
for (int i = 1; i <= m; i++)
for (int j = 0; j<(1 << m); j++)
f[i][j] = inf;
for (int i = 1; i <= m; i++)
f[i][1 << (i-1)] = 0;
for (int mask = 0; mask < (1 << m); mask++)
{
for (int i = 1; i <= m; i++)
{
if (!(mask & (1 << (i - 1)))) continue;
for (int j = 1;j <= m;j++)
{
if (mask & (1 << (j - 1))) continue;
f[j][mask ^ (1 << (j - 1))] = min(f[j][mask ^ (1 << (j - 1))], f[i][mask] + cost[i][j]);
}
}
}
int ans = f[1][(1 << m)-1];
for (int i = 2; i <= m; i++) ans = min(ans, f[i][(1 << m)-1]);
if (ans >= inf) printf("-1\n");
else printf("%d\n", ans);
}
void solve()
{
DataScanner();
Build();
Floyd();
DP();
}
int main()
{
while (~scanf("%d%d", &n, &m))
solve();
return 0;
}
晚上玩最短路径问题,发现HDU2544和3790完全尼玛是一道题啊,就是改了一两个地方。。。。。囧