这题我用了很笨的方法,可是经过一番努力我还是搞定了,很激动很激动
用一维数组记录从第一个字符到该位置最少回文串个数
Description
A palindrome partition is the partitioning of a string such that each separate substring is a palindrome.
For example, the string "ABACABA" could be partitioned in several different ways, such as {"A","B","A","C","A","B","A"}, {"A","BACAB","A"}, {"ABA","C","ABA"}, or {"ABACABA"}, among others.
You are given a string s. Return the minimum possible number of substrings in a palindrome partition of s.
Input
Input starts with an integer T (≤ 40), denoting the number of test cases.
Each case begins with a non-empty string s of uppercase letters with length no more than 1000.
Output
For each case of input you have to print the case number and the desired result.
Sample Input
3
AAAA
ABCDEFGH
QWERTYTREWQWERT
Sample Output
Case 1: 1
Case 2: 8
Case 3: 5
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
char a[1010];
int dp[1010];
int main()
{
int n,r,m,ca=1;
scanf("%d",&r);
while(r--)
{
scanf("%s",a+1);
n=strlen(a+1);
for(int i=1;i<=n;i++)
dp[i]=i;
m=n;
int i,j,k,s,t;
for( i=1;i<n;i++)
{
int x,sum;
if(a[i]==a[i+1])
{
sum=0;x=i;
for(j=i,k=i+1;j>=1,k<=n;j--,k++)
{
if(a[j]!=a[k] )
break;
if(a[j]==a[i] && a[k]==a[i]) sum+=2;
}
s=j+1;t=k-1;
dp[t]=min(dp[t],dp[s-1]+1);
if(dp[t]==dp[s-1]+1)
{
if(sum==t-s+1)
for(int l=s+1;l<=t;l++)
dp[l]=dp[s];
else
for(int l=i+1;l<=t;l++)
{
dp[l]=dp[x-1]+1;
x--;
}
for(int l=t+1;l<=n;l++)
dp[l]=dp[t]+l-t;
}
}
if(a[i-1]==a[i+1] && i>=2)
{
sum=1;x=i-1;
for(j=i-1,k=i+1;j>=1,k<=n;j--,k++)
{
if(a[j]!=a[k] )
break;
if(a[j]==a[i] && a[k]==a[i]) sum+=2;
}
s=j+1;t=k-1;
dp[t]=min(dp[t],dp[s-1]+1);
if(dp[t]==dp[s-1]+1)
{
if(sum==t-s+1)
for(int l=s+1;l<=t;l++)
dp[l]=dp[s];
else
for(int l=i+1;l<=t;l++)
{
dp[l]=dp[x-1]+1;
x--;
}
for(int l=t+1;l<=n;l++)
dp[l]=dp[t]+l-t;
}
}
}
printf("Case %d: %d\n",ca++,dp[n]);
}
}