Https原理及流程

该博客主要围绕Https展开,介绍其原理和流程。Https在网络通信中保障数据安全,通过特定机制实现加密传输,了解其原理和流程有助于更好地理解网络安全相关知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MapReduce是一种用于处理大规模数据集的编程模型和计算框架。它的工作原理流程如下: 1. Map阶段:在Map阶段,输入数据被分割成多个小的数据块,并由多个Map任务并行处理。每个Map任务将输入数据块转换为键值对的形式,并执行用户定义的Map函数。Map函数将每个键值对映射为中间键值对。 2. Shuffle阶段:在Shuffle阶段,Map任务的输出被分区、排序和分组,以便将具有相同键的中间键值对发送到同一个Reduce任务。这个过程涉及到数据的移动和排序操作。 3. Reduce阶段:在Reduce阶段,每个Reduce任务接收到一组具有相同键的中间键值对,并执行用户定义的Reduce函数。Reduce函数将这些中间键值对聚合为最终的输出结果。 整个MapReduce过程由一个主节点(JobTracker)和多个工作节点(TaskTracker)组成。JobTracker负责资源管理和作业控制,它将输入数据划分为多个数据块,并将Map和Reduce任务分配给可用的TaskTracker。TaskTracker负责执行Map和Reduce任务,并将结果返回给JobTracker。 总结起来,MapReduce的工作原理是通过将大规模数据集分割成小的数据块,并在多个节点上并行处理,最后将结果聚合起来得到最终的输出。这种分布式计算模型可以有效地处理大规模数据集,并提供了高可靠性和可扩展性。\[1\]\[2\] #### 引用[.reference_title] - *1* [MapReduce工作原理与工作流程](https://blog.youkuaiyun.com/weixin_43829117/article/details/122287835)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [MapReduce的原理和执行流程](https://blog.youkuaiyun.com/leanaoo/article/details/83153889)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值