poj 2115 C Looooops His love for her is enshrined forever in his heart.扩展欧几里得

本文探讨了一种特殊的C语言for循环,在给定的参数下计算循环体内语句的执行次数。通过将问题转化为求解特定数学方程的形式,并利用扩展欧几里得算法来解决。特别关注了位运算的使用以提高效率。
C Looooops
Time Limit: 1000MSMemory Limit: 65536K
Total Submissions: 15519Accepted: 3962

Description

A Compiler Mystery: We are given a C-language style for loop of type 
for (variable = A; variable != B; variable += C)

  statement;

I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k

Input

The input consists of several instances. Each instance is described by a single line with four integers A, B, C, k separated by a single space. The integer k (1 <= k <= 32) is the number of bits of the control variable of the loop and A, B, C (0 <= A, B, C < 2k) are the parameters of the loop. 

The input is finished by a line containing four zeros. 

Output

The output consists of several lines corresponding to the instances on the input. The i-th line contains either the number of executions of the statement in the i-th instance (a single integer number) or the word FOREVER if the loop does not terminate. 

Sample Input

3 3 2 16
3 7 2 16
7 3 2 16
3 4 2 16
0 0 0 0

Sample Output

0
2
32766
FOREVER

Source

 
 
 
 
 
 
 
这个题目的意思是说C语言的for循环,我们问是否使v=a;v=v+c,在循环中使v=b,如果不能的话就是forever了,同时还要使其%(2^k),才可以,也就是说为(a+x*c)%2^k=b,
那么就是c*x=(b-a)%2^k,其实也就可以换成一个式子x*A+B*y=C,这样就成功比对了欧几里得定理的公式,C=b-a,A=c,B=2^k,这样我们在做的时候直接套用欧几里得定理就是了,就这么简单!!!!,另外对于2^k,的使用,我们要用位运算,用pow编译器不会报错,但是提交就会错了!!!!
 
 
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
long long exgcd(long long a,long long b,long long &x,long long &y)
{
    long long d,t;
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    d=exgcd(b,a%b,x,y);
    t=x-a/b*y;
    x=y;
    y=t;
    return d;

}
int main()
{
    long long a,b,x,y,c,a1,a2,a3,k;
    int i,j;
    while(scanf("%lld%lld%lld%lld",&a1,&a2,&a3,&k)!=EOF)
    {
        if((a1==0)&&(a2==0)&&(a3==0)&&(k==0))
        break;
        a=a3;
        //b=pow(2,k);
        b=1LL<<k;
        c=a2-a1;
        long long r=exgcd(a,b,x,y);
        if(c%r)
        {
            printf("FOREVER\n");

        }
        else
        {
            long long  s=b/r;
            x=x*(c/r);
            x=(x%s+s)%s;
            cout<<x<<endl;
        }

    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值