object-detection

awesome-object-detection

Awesome Object Detection based on handong1587 github(https://handong1587.github.io/deep_learning/2015/10/09/object-detection.htmlhttps://github.com/amusi/awesome-object-detection

Papers&Codes

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation

Fast R-CNN

Fast R-CNN

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

R-CNN minus R

Faster R-CNN in MXNet with distributed implementation and data parallelization

Contextual Priming and Feedback for Faster R-CNN

An Implementation of Faster RCNN with Study for Region Sampling

Interpretable R-CNN

Light-Head R-CNN

Light-Head R-CNN: In Defense of Two-Stage Object Detector

Cascade R-CNN

Cascade R-CNN: Delving into High Quality Object Detection

SPP-Net

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

Object Detectors Emerge in Deep Scene CNNs

segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

Object Detection Networks on Convolutional Feature Maps

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

DeepBox: Learning Objectness with Convolutional Networks

YOLO

You Only Look Once: Unified, Real-Time Object Detection

img

darkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++

Start Training YOLO with Our Own Data

img

YOLO: Core ML versus MPSNNGraph

TensorFlow YOLO object detection on Android

Computer Vision in iOS – Object Detection

YOLOv2

YOLO9000: Better, Faster, Stronger

darknet_scripts

Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2

LightNet: Bringing pjreddie’s DarkNet out of the shadows

https://github.com//explosion/lightnet

YOLO v2 Bounding Box Tool

Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors

  • intro: LRM is the first hard example mining strategy which could fit YOLOv2 perfectly and make it better applied in series of real scenarios where both real-time rates and accurate detection are strongly demanded.

  • arxiv: https://arxiv.org/abs/1804.04606

YOLOv3

YOLOv3: An Incremental Improvement

SSD

SSD: Single Shot MultiBox Detector

img

What’s the diffience in performance between this new code you pushed and the previous code? #327

https://github.com/weiliu89/caffe/issues/327

DSSD

DSSD : Deconvolutional Single Shot Detector

Enhancement of SSD by concatenating feature maps for object detection

Context-aware Single-Shot Detector

Feature-Fused SSD: Fast Detection for Small Objects

https://arxiv.org/abs/1709.05054

FSSD

FSSD: Feature Fusion Single Shot Multibox Detector

https://arxiv.org/abs/1712.00960

Weaving Multi-scale Context for Single Shot Detector

ESSD

Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network

https://arxiv.org/abs/1801.05918

Tiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded Object Detection

https://arxiv.org/abs/1802.06488

Pelee

Pelee: A Real-Time Object Detection System on Mobile Devices

https://github.com/Robert-JunWang/Pelee

R-FCN

R-FCN: Object Detection via Region-based Fully Convolutional Networks

R-FCN-3000 at 30fps: Decoupling Detection and Classification

https://arxiv.org/abs/1712.01802

Recycle deep features for better object detection

FPN

Feature Pyramid Networks for Object Detection

Action-Driven Object Detection with Top-Down Visual Attentions

Beyond Skip Connections: Top-Down Modulation for Object Detection

Wide-Residual-Inception Networks for Real-time Object Detection

Attentional Network for Visual Object Detection

Learning Chained Deep Features and Classifiers for Cascade in Object Detection

DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling

Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries

Spatial Memory for Context Reasoning in Object Detection

Accurate Single Stage Detector Using Recurrent Rolling Convolution

Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

https://arxiv.org/abs/1704.05775

LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems

Point Linking Network for Object Detection

Perceptual Generative Adversarial Networks for Small Object Detection

https://arxiv.org/abs/1706.05274

Few-shot Object Detection

https://arxiv.org/abs/1706.08249

Yes-Net: An effective Detector Based on Global Information

https://arxiv.org/abs/1706.09180

SMC Faster R-CNN: Toward a scene-specialized multi-object detector

https://arxiv.org/abs/1706.10217

Towards lightweight convolutional neural networks for object detection

https://arxiv.org/abs/1707.01395

RON: Reverse Connection with Objectness Prior Networks for Object Detection

Mimicking Very Efficient Network for Object Detection

Residual Features and Unified Prediction Network for Single Stage Detection

https://arxiv.org/abs/1707.05031

Deformable Part-based Fully Convolutional Network for Object Detection

Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors

Recurrent Scale Approximation for Object Detection in CNN

DSOD

DSOD: Learning Deeply Supervised Object Detectors from Scratch

img

Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids

RetinaNet

Focal Loss for Dense Object Detection

CoupleNet: Coupling Global Structure with Local Parts for Object Detection

Incremental Learning of Object Detectors without Catastrophic Forgetting

Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection

https://arxiv.org/abs/1709.04347

StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection

https://arxiv.org/abs/1709.05788

Dynamic Zoom-in Network for Fast Object Detection in Large Images

https://arxiv.org/abs/1711.05187

Zero-Annotation Object Detection with Web Knowledge Transfer

MegDet

MegDet: A Large Mini-Batch Object Detector

Single-Shot Refinement Neural Network for Object Detection

Receptive Field Block Net for Accurate and Fast Object Detection

An Analysis of Scale Invariance in Object Detection - SNIP

Feature Selective Networks for Object Detection

https://arxiv.org/abs/1711.08879

Learning a Rotation Invariant Detector with Rotatable Bounding Box

Scalable Object Detection for Stylized Objects

Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids

Deep Regionlets for Object Detection

Training and Testing Object Detectors with Virtual Images

Large-Scale Object Discovery and Detector Adaptation from Unlabeled Video

  • keywords: object mining, object tracking, unsupervised object discovery by appearance-based clustering, self-supervised detector adaptation
  • arxiv: https://arxiv.org/abs/1712.08832

Spot the Difference by Object Detection

Localization-Aware Active Learning for Object Detection

Object Detection with Mask-based Feature Encoding

https://arxiv.org/abs/1802.03934

LSTD: A Low-Shot Transfer Detector for Object Detection

Domain Adaptive Faster R-CNN for Object Detection in the Wild

Pseudo Mask Augmented Object Detection

https://arxiv.org/abs/1803.05858

Revisiting RCNN: On Awakening the Classification Power of Faster RCNN

https://arxiv.org/abs/1803.06799

Zero-Shot Detection

Learning Region Features for Object Detection

Single-Shot Bidirectional Pyramid Networks for High-Quality Object Detection

Object Detection for Comics using Manga109 Annotations

Task-Driven Super Resolution: Object Detection in Low-resolution Images

https://arxiv.org/abs/1803.11316

Transferring Common-Sense Knowledge for Object Detection

https://arxiv.org/abs/1804.01077

Multi-scale Location-aware Kernel Representation for Object Detection

Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors

Robust Physical Adversarial Attack on Faster R-CNN Object Detector

https://arxiv.org/abs/1804.05810

DetNet

DetNet: A Backbone network for Object Detection

Other

Relation Network for Object Detection

Quantization Mimic: Towards Very Tiny CNN for Object Detection

<think>好的,我现在需要帮助用户找到关于object-detection-msgs库的信息,包括使用说明、文档、下载、安装和示例。首先,我要回忆一下用户提供的引用内容。引用[1]提到了使用TensorFlow的物体识别API和ROS节点,引用[3]涉及ROS/MoveIt的配置,可能相关。不过用户的问题是关于object-detection-msgs这个库,我需要确认这个库是否是ROS生态的一部分。 首先,我应该考虑object-detection-msgs是否是一个标准的ROS包。ROS中常见的消息包通常以-msgs结尾,比如sensor_msgs、geometry_msgs等。用户提到的可能是一个自定义的消息包,用于物体检测相关的消息类型,比如BoundingBox、DetectionResult等。 接下来,我需要检查用户提供的引用是否有相关信息。引用[1]中提到了制作一个ROS节点,调用物体检测API,但并没有提到object-detection-msgs。引用[3]关于MoveIt的配置,可能不直接相关。因此,可能需要依赖外部知识或假设这个库是第三方ROS包。 假设object-detection-msgs是一个ROS包,用户需要安装和使用它。通常,ROS包的安装可以通过apt-get或者从源代码构建。我需要指导用户如何搜索这个包,比如使用apt-cache search或者访问ROS Wiki。例如,可以建议用户运行sudo apt-get install ros-<distro>-object-detection-msgs,其中<distro>是ROS版本,如noetic或melodic。 如果这个包不在官方仓库中,可能需要从GitHub或其他代码仓库克隆源代码,然后使用catkin_make进行编译。用户提供的引用[1]中有GitHub链接,可能类似的库也托管在GitHub上,需要指导用户查找相关仓库。 关于文档,ROS包通常会有README文件或ROS Wiki页面。用户可能需要访问该包的GitHub页面或ROS Wiki来查看使用说明和示例。例如,可以建议用户查看包的GitHub仓库的文档部分,或者使用rosdoc_lite生成文档。 示例方面,可能需要用户查看包中的examples文件夹,或者参考相关的ROS节点,如引用[1]中的示例,但需要调整消息类型为object-detection-msgs中定义的类型。 另外,用户可能需要创建或修改ROS节点来发布或订阅这些消息。例如,在Python中,导入消息类型后,定义发布者和订阅者,处理消息数据。需要提醒用户注意消息的字段和结构,可能需要参考消息定义文件(.msg文件)。 安装完成后,用户需要确保包在ROS工作空间的source环境中,以便roslaunch或rosrun能够找到相关的节点和消息。 总结步骤:1. 检查官方ROS仓库是否存在该包;2. 安装或从源码构建;3. 查阅文档和示例;4. 创建节点使用消息类型。同时,需要提醒用户注意ROS版本兼容性,以及可能的依赖项安装。</think>### 关于`object-detection-msgs`库的使用说明 根据引用内容及ROS生态系统的常见实践,`object-detection-msgs`可能是一个自定义的ROS消息包,用于定义物体检测相关的消息类型(如检测框、物体类别、置信度等)。以下是具体的使用说明: --- ### **1. 安装与下载** #### **通过官方仓库安装** 如果该包已发布到ROS官方仓库,可以通过以下命令安装(以ROS Noetic为例): ```bash sudo apt-get install ros-noetic-object-detection-msgs ``` 若未找到,可能是第三方包,需从源码编译。 #### **从源码构建** 1. 克隆仓库到ROS工作空间的`src`目录: ```bash cd ~/catkin_ws/src git clone https://github.com/<仓库路径>/object-detection-msgs.git ``` 2. 安装依赖并编译: ```bash cd ~/catkin_ws rosdep install --from-paths src --ignore-src -y catkin_make source devel/setup.bash ``` --- ### **2. 文档与消息定义** #### **查看消息类型** - 使用`rosmsg show`命令查看消息结构: ```bash rosmsg show object_detection_msgs/BoundingBox rosmsg show object_detection_msgs/DetectionResult ``` 输出可能类似: ``` std_msgs/Header header object_detection_msgs/BoundingBox[] boxes string[] class_labels float32[] scores ``` #### **在线文档** - 访问ROS Wiki页面(如存在): http://wiki.ros.org/object_detection_msgs - 或直接查看仓库的`README.md`和`msg/`目录下的`.msg`文件[^1]。 --- ### **3. 使用示例** #### **发布检测结果(Python)** ```python #!/usr/bin/env python3 import rospy from object_detection_msgs.msg import DetectionResult, BoundingBox from std_msgs.msg import Header def publish_detection(): pub = rospy.Publisher('/detection_results', DetectionResult, queue_size=10) rospy.init_node('detection_publisher') rate = rospy.Rate(10) while not rospy.is_shutdown(): header = Header(stamp=rospy.Time.now(), frame_id="camera_frame") box = BoundingBox(xmin=100, ymin=200, xmax=300, ymax=400) result = DetectionResult(header=header, boxes=[box], class_labels=["cat"], scores=[0.95]) pub.publish(result) rate.sleep() if __name__ == '__main__': publish_detection() ``` #### **订阅检测结果(Python)** ```python #!/usr/bin/env python3 import rospy from object_detection_msgs.msg import DetectionResult def callback(msg): rospy.loginfo("Detected: %s with confidence %.2f", msg.class_labels[0], msg.scores[0]) def subscribe_detection(): rospy.init_node('detection_subscriber') rospy.Subscriber('/detection_results', DetectionResult, callback) rospy.spin() if __name__ == '__main__': subscribe_detection() ``` --- ### **4. 调试与验证** - **检查消息内容**: 使用`rostopic echo /detection_results`查看实时消息数据[^2]。 - **依赖检查**: 确保所有依赖包(如`std_msgs`)已安装。 --- ### **5. 与现有系统集成** - 若需结合物体检测模型(如TensorFlow的API),参考引用[1]中的ROS节点设计,将检测结果封装为`DetectionResult`消息发布[^1]。 - 在MoveIt中规划机械臂动作时,可通过`object-detection-msgs`传递目标物体的位置信息[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值