题意:给定一个长度为n的序列,然后m次询问, 每个询问求[l, r]区间的与其他数都互质的数的个数
分析:非常感谢叉姐提供的思路,首先对于每一个a[i]我们可以求出 left[i], right[i]表示这段区间的数与a[i]都互质,对于询问的区间我们按照左端点从小到大排序进行离线操作,对于到达left[i]时我们将[i, right[i]] +1, 离开i时将[i, right[i]] -1,这里可以用线段树进行维护
#include
const int N = 200000 + 5;
int n, m;
int a[N], left[N], right[N];
int sum[N << 2], mark[N << 2];
int answer[N], pos[N];
std::vector buffer[N];
std::vector factors[N];
std::pair , int> p[N];
void prepare() {
for (int i = 2; i < N; i ++) if ((int)factors[i].size() == 0) {
for (int j = i; j < N; j += i) {
factors[j].push_back(i);
}
}
}
void up(int o) {
sum[o] = sum[o << 1] + sum[o << 1 | 1];
}
void down(int o, int l, int r) {
int mid = (l + r) >> 1;
sum[o << 1] += mark[o] * (mid - l + 1);
sum[o << 1 | 1] += mark[o] * (r - mid);
mark[o << 1] += mark[o];
mark[o << 1 | 1] += mark[o];
mark[o] = 0;
}
void update(int o, int l, int r, int L, int R, int x) {
if (L <= l && R >= r) {
mark[o] += x;
sum[o] += x * (r - l + 1);
return ;
}
if (mark[o] != 0) {
down(o, l, r);
}
int mid = (l + r) >> 1;
if (L <= mid) {
update(o << 1, l, mid, L, R, x);
}
if (R > mid) {
update(o << 1 | 1, mid + 1, r, L, R, x);
}
up(o);
}
int query(int o, int l, int r, int x) {
if (l == r) {
return sum[o];
}
if (mark[o] != 0) {
down(o, l, r);
}
int mid = (l + r) >> 1;
if (x <= mid) {
return query(o << 1, l, mid, x);
} else {
return query(o << 1 | 1, mid + 1, r, x);
}
}
void work() {
for (int i = 1; i <= n; i ++) {
buffer[i].clear();
}
for (int i = 1; i <= n; i ++) {
buffer[left[i]].push_back(i);
}
int now = 0;
for (int i = 1; i <= 4 * n; i ++) {
sum[i] = 0;
mark[i] = 0;
}
for (int i = 1; i <= n; i ++) {
for (int j = 0; j < (int)buffer[i].size(); j ++) {
int l = buffer[i][j];
int r = right[buffer[i][j]];
update(1, 1, n, l, r, 1);
}
while (now < m && p[now].first.first == i) {
answer[p[now].second] = query(1, 1, n, p[now].first.second);
now ++;
}
if (now == m) {
return ;
}
update(1, 1, n, i, right[i], -1);
}
}
int main() {
prepare();
while (scanf("%d%d", &n, &m) == 2 && n + m) {
for (int i = 1; i <= n; i ++) {
scanf("%d", &a[i]);
}
int maxv = *std::max_element(a + 1, a + n + 1);
std::fill(pos, pos + maxv + 1, 0);
for (int i = 1; i <= n; i ++) {
left[i] = 1;
for (int j = 0; j < (int)factors[a[i]].size(); j ++) {
int x = factors[a[i]][j];
left[i] = std::max(left[i], pos[x] + 1);
pos[x] = i;
}
}
std::fill(pos, pos + maxv + 1, n + 1);
for (int i = n; i >= 1; i --) {
right[i] = n;
for (int j = 0; j < (int)factors[a[i]].size(); j ++) {
int x = factors[a[i]][j];
right[i] = std::min(right[i], pos[x] - 1);
pos[x] = i;
}
}
for (int i = 0; i < m; i ++) {
int l, r;
scanf("%d%d", &l, &r);
p[i].first = {l, r};
p[i].second = i;
}
std::sort(p, p + m);
work();
for (int i = 0; i < m; i ++) {
printf("%d\n", answer[i]);
}
}
return 0;
}