常见向量范数和矩阵范数<转载>

本文详细介绍了向量及矩阵的各种范数定义及其在Matlab中的实现方式,包括1-范数、2-范数、∞-范数、F-范数等,并解释了它们在数值线性代数中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#python numpy中,向量默认范数是2-范数,矩阵默认范数是F-范数!!!

1、向量范数

1-范数:,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。

2-范数:,Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方,matlab调用函数norm(x, 2)。

∞-范数:,即所有向量元素绝对值中的最大值,matlab调用函数norm(x, inf)。

-∞-范数:,即所有向量元素绝对值中的最小值,matlab调用函数norm(x, -inf)。

p-范数:,即向量元素绝对值的p次方和的1/p次幂,matlab调用函数norm(x, p)。


2、矩阵范数

1-范数:, 列和范数,即所有矩阵列向量绝对值之和的最大值,matlab调用函数norm(A, 1)。

2-范数:,谱范数,即A'A矩阵的最大特征值的开平方。matlab调用函数norm(x, 2)。

∞-范数:,行和范数,即所有矩阵行向量绝对值之和的最大值,matlab调用函数norm(A, inf)。

F-范数:,Frobenius范数,即矩阵元素绝对值的平方和再开平方,matlab调用函数norm(A, ’fro‘)。

本文转载自:http://blog.youkuaiyun.com/left_la/article/details/9159949


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值