zoj3329 概率dp

One Person Game

Time Limit: 1 Second      Memory Limit: 32768 KB      Special Judge

There is a very simple and interesting one-person game. You have 3 dice, namely Die1Die2 and Die3Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the dice are fair dice, so the probability of rolling each value, 1 to K1K2K3 is exactly 1 / K1, 1 / K2 and 1 / K3. You have a counter, and the game is played as follow:

  1. Set the counter to 0 at first.
  2. Roll the 3 dice simultaneously. If the up-facing number of Die1 is a, the up-facing number of Die2 is b and the up-facing number of Die3 is c, set the counter to 0. Otherwise, add the counter by the total value of the 3 up-facing numbers.
  3. If the counter's number is still not greater than n, go to step 2. Otherwise the game is ended.

Calculate the expectation of the number of times that you cast dice before the end of the game.

Input

There are multiple test cases. The first line of input is an integer T (0 < T <= 300) indicating the number of test cases. Then T test cases follow. Each test case is a line contains 7 non-negative integers nK1K2K3abc (0 <= n <= 500, 1 < K1K2K3 <= 6, 1 <= a <= K1, 1 <= b <= K2, 1 <= c <= K3).

Output

For each test case, output the answer in a single line. A relative error of 1e-8 will be accepted.

Sample Input

2
0 2 2 2 1 1 1
0 6 6 6 1 1 1

Sample Output

1.142857142857143
1.004651162790698


/*
ZOJ 3329
题意:有三个骰子,分别有k1,k2,k3个面。
每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和。
当分数大于n时结束。求游戏的期望步数。初始分数为0

设dp[i]表示达到i分时到达目标状态的期望,pk为投掷k分的概率,p0为回到0的概率
//这里是逆向推导的过程,从i+k状态往i状态递推,有一次分值降为0则要多投一次
//概率dp真是博大精深,感觉还没入门
则dp[i]=∑(pk*dp[i+k])+dp[0]*p0+1;
都和dp[0]有关系,而且dp[0]就是我们所求,为常数
设dp[i]=A[i]*dp[0]+B[i];
代入上述方程右边得到:
dp[i]=∑(pk*A[i+k]*dp[0]+pk*B[i+k])+dp[0]*p0+1
     =(∑(pk*A[i+k])+p0)dp[0]+∑(pk*B[i+k])+1;
     明显A[i]=(∑(pk*A[i+k])+p0)
     B[i]=∑(pk*B[i+k])+1
     先递推求得A[0]和B[0].
     那么  dp[0]=B[0]/(1-A[0]);
*/
#include <iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
double  A[600],B[600],p[600];
int main()
{
    double p0;
    int i,j,k,k1,k2,k3,a,b,c,m,n;
    scanf("%d",&n);
    while(n--)
    {
        scanf("%d%d%d%d%d%d%d",&m,&k1,&k2,&k3,&a,&b,&c);
        p0=1.0/k1/k2/k3;
        memset(p,0,sizeof(p));
        memset(A,0,sizeof(A));
        memset(B,0,sizeof(B));
        for(i=1;i<=k1;i++)
        for(j=1;j<=k2;j++)
        for(k=1;k<=k3;k++)
        if(i!=a||j!=b||k!=c)
        p[i+j+k]+=p0;
        for(i=m;i>=0;i--)
        {
            A[i]=p0;B[i]=1;
            for(j=1;j<=k1+k2+k3;j++)
            {
                A[i]+=A[j+i]*p[j];
                B[i]+=B[j+i]*p[j];
            }
        }
        printf("%.16f\n",B[0]/(1-A[0]));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LittleLoveBoy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值