题意:给出n,m,s,t,n表示有n个点,m表示有m条边,然后给出m行数据表示m条边,每条边的数据有连接两点的序号以及该边的权值,问说从点s到点t的最短路径是多少。
思路:分析题目的样列可知,这一题是要用邻接矩阵来存储无向图,所以要注意无向图怎么存储在邻阶表。连接表的横列有N项,纵列也是N项。形成的N*N项每项都被称为边结点,每项都有纵横两个坐标,例如点(N,N-1),表示的就是从第N点向第N-1点有无路径。由于有E条边,自然有E条路径,但是由于无向=双向,所以要乘以2
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
using std::make_pair;
using namespace std;
const int N = 400005;
const int INF = 1 << 30;
typedef pair<int, int> pii;
int n, m, s, t;
int d[N], rec[N];
int first[N], u[N], next[N], v[N], w[N];
struct cmp{
bool operator() (const int a, const int b){
return a % 10 > b % 10;
}
};
priority_queue<int, vector<pii>, greater<pii> > q;
void init() {
scanf("%d %d %d %d", &n, &m, &s, &t);
for (int i = 0; i < n; i++)
first[i] = -1;
m *= 2;
for (int i = 0; i < m; i++) {
scanf("%d %d %d", &u[i], &v[i], &w[i]);
next[i] = first[u[i]];
first[u[i]] = i;
i++;
v[i] = u[i - 1] , u[i] = v[i - 1], w[i] = w[i - 1];
next[i] = first[u[i]];
first[u[i]] = i;
}
}
void dijkstra() {
bool done[N];
for (int i = 0; i < n; i++)
d[i] = (i == s ? 0 : INF);
memset(done, 0, sizeof(done));
q.push(make_pair(d[s], s));
while (!q.empty()) {
pii u = q.top();
q.pop();
int x = u.second;
if (done[x])
continue;
done[x] = true;
for (int i = first[x]; i != -1; i = next[i]) {
if (d[v[i]] > d[x] + w[i]) {
d[v[i]] = d[x] + w[i];
q.push(make_pair(d[v[i]], v[i]));
}
}
}
}
int main() {
int cas, o = 0;
scanf("%d", &cas);
while (cas--) {
init();
dijkstra();
printf("Case #%d: ", ++o);
if (d[t] == INF)
printf("unreachable\n");
else
printf("%d\n", d[t]);
}
return 0;
}