Description
There are n lights in a circle numbered from 1 to n. The left of light 1 is light n, and the left of light k (1< k<= n) is the light k-1.At time of 0, some of them turn on, and others turn off.
Change the state of light i (if it's on, turn off it; if it is not on, turn on it) at t+1 second (t >= 0), if the left of light i is on !!!Given the initiation state, please find all lights’ state after M second. (2<= n <= 100, 1<= M<= 10^8)
Change the state of light i (if it's on, turn off it; if it is not on, turn on it) at t+1 second (t >= 0), if the left of light i is on !!!Given the initiation state, please find all lights’ state after M second. (2<= n <= 100, 1<= M<= 10^8)
Input
The input contains one or more data sets. The first line of each data set is an integer m indicate the time, the second line will be a string T, only contains '0' and '1' , and its length n will not exceed 100. It means all lights
in the circle from 1 to n.
If the ith character of T is '1', it means the light i is on, otherwise the light is off.
If the ith character of T is '1', it means the light i is on, otherwise the light is off.
Output
For each data set, output all lights' state at m seconds in one line. It only contains character '0' and '1.
Sample Input
1 0101111 10 100000001
Sample Output
1111000 001000010
题意:一排灯,给你初始状态,然后每秒都会有这样的操作:如果该盏灯的左边是亮的话,就改变状态,否则不变,最左边的参考最右边的
思路:很容易发现有:a1 = (a1+an)%2 , a2 = (a2 + a1) % 2 ......... an = (an + an-1)%2
然后构造类似矩阵: 1 0 0 1 ,位运算快的多,因为这道题的特殊性
1 1 0 0
0 1 1 0
0 0 1 1
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn = 105;
const int mod = 2;
int cnt;
struct Matrix {
int v[maxn][maxn];
Matrix() {}
Matrix(int x) {
init();
for (int i = 0; i < maxn; i++)
v[i][i] = x;
}
void init() {
memset(v, 0, sizeof(v));
}
Matrix operator *(Matrix const &b) const {
Matrix c;
c.init();
for (int i = 0; i < cnt; i++)
for (int j = 0; j < cnt; j++)
for (int k = 0; k < cnt; k++)
c.v[i][j] ^= (v[i][k] & b.v[k][j]);
return c;
}
Matrix operator ^(int b) {
Matrix a = *this, res(1);
while (b) {
if (b & 1)
res = res * a;
a = a * a;
b >>= 1;
}
return res;
}
} a, b, tmp;
int main() {
int t;
char str[maxn];
int num[maxn];
while (scanf("%d", &t) != EOF) {
scanf("%s", str);
cnt = strlen(str);
for (int i = 0; i < cnt; i++)
num[i] = str[i] - '0';
a.init();
a.v[0][cnt-1] = a.v[0][0] = 1;
for (int i = 1; i < cnt; i++)
a.v[i][i] = a.v[i][i-1] = 1;
tmp = a^t;
int ans[maxn];
memset(ans, 0, sizeof(ans));
for (int i = 0; i < cnt; i++)
if (num[i])
for (int j = 0; j < cnt; j++)
if (tmp.v[j][i])
ans[j] = (ans[j]+ (tmp.v[j][i]*num[i])%mod) % mod;
for (int i = 0; i < cnt; i++)
printf("%d", ans[i]);
printf("\n");
}
return 0;
}