原创博客地址: python进阶08并发之四map, apply, map_async, apply_async差异
差异矩阵
python封装了4种常用方法,用于实现并发
其差异如下
| Multi-args | Concurrence | Blocking | Ordered-results | |
|---|---|---|---|---|
| map | no | yes | yes | yes |
| apply | yes | no | yes | no |
| map_async | no | yes | no | yes |
| apply_async | yes | yes | no | no |
需要注意:map 和 map_async 入参为迭代器类型,可以批量调用。而apply和apply_async只能一个个调用。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | # map
results = pool.map(worker, [1, 2, 3])
# apply
for x, y in [[1, 1], [2, 2]]:
results.append(pool.apply(worker, (x, y)))
def collect_result(result):
results.append(result)
# map_async
pool.map_async(worker, jobs, callback=collect_result)
# apply_async
for x, y in [[1, 1], [2, 2]]:
pool.apply_async(worker, (x, y), callback=collect_result)
|
apply和apply_async
Pool.apply_async:调用立即返回而不是等待结果。AsyncResult返回一个对象。你调用其get()方法以检索函数调用的结果。该get()方法将阻塞直到功能完成。
因此,pool.apply(func, args, kwargs)等效于pool.apply_async(func, args, kwargs).get()。
相比Pool.apply,该Pool.apply_async方法还具有一个回调,则在函数完成时调用该回调。可以使用它来代替get()。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import multiprocessing as mp
import time
def foo_pool(x):
time.sleep(2)
return x*x
result_list = []
def log_result(result):
# This is called whenever foo_pool(i) returns a result.
# result_list is modified only by the main process, not the pool workers.
result_list.append(result)
def apply_async_with_callback():
pool = mp.Pool()
for i in range(10):
pool.apply_async(foo_pool, args = (i, ), callback = log_result)
pool.close()
pool.join()
print(result_list)
if __name__ == '__main__':
apply_async_with_callback()
可能会产生如下结果
[1, 0, 4, 9, 25, 16, 49, 36, 81, 64]
|
还要注意,可使用调用许多不同的函数Pool.apply_async(并非所有调用都需要使用同一函数)。
相反,Pool.map将相同的函数应用于许多参数。但是,与不同Pool.apply_async,返回结果的顺序与参数的顺序相对应。
参考
Python multiprocessing.Pool: Difference between map, apply, map_async, apply_async
Python-multiprocessing.Pool:何时使用apply,apply_async或map?
本文深入解析Python中四种并发方法:map、apply、map_async、apply_async的差异与应用。通过对比,阐述它们在多参数、并发性、阻塞性及结果顺序上的特性,并提供实例代码,帮助理解如何在实际编程中选择合适的并发方式。





