uva 11014 - Make a Crystal(数论)

该博客主要解析了UVA 11014 - Make a Crystal的数论问题。内容涉及在三维空间中,如何根据给定的n,找出所有与原点(0,0,0)不共线的点对,并利用容斥原理和质因子分析来解决这个问题。解题策略包括枚举点的坐标及其公共因子,注意考虑含有偶数个质因子的情况。" 103215854,7613308,深入理解Kafka:生产者与消费者机制解析,"['Kafka', '分布式系统', '消息队列', '数据处理']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:uva 11014 - Make a Crystal

题目大意:给定n,表示在一个三维的空间,在坐标均不大于n的点中选取2个点,保证这两个点与(0,0,0)三点不同线。问能找到多少对。

解题思路:容斥原理,如果有坐标(x,y,z),并且(2x,2y,2z)在范围内,那个该对点就不可取,于是要减掉包含公共因子的部分。所以枚举因子,但是如果因子包含有偶数个质因子,则加上。

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;
typedef long long ll;
const int maxn = 200000;

int np, pri[maxn+5], vis[maxn+5];

void priTable (int n) {
    np = 0;
    memset(vis, 0, sizeof(vis));

    for (int i = 2; i <= n; i++) {
        if (vis[i])
            continue;
        pri[np++] = i;
        for (int j = 2*i; j <= n; j += i)
            vis[j] = 1;
    }
}

ll N;

inline ll count (ll n) {
    return n * n * n - 1;
}

inline ll fcount (ll n) {
    int ans = 0;
    for (int i = 0; i < np && pri[i] <= n; i++) {
        if (n < maxn && !vis[n]) {
            ans++;
            break;
        }

        if (n%pri[i] == 0) {
            ans++;
            n /= pri[i];
            if (n%pri[i] == 0)
                return 0;
        }
    }
    return ans&1 ? -1 : 1;
}

ll solve () {
    ll ans = count(N+1);
    for (ll i = 2; i <= N; i++) {
        ll t = fcount(i);
        ans += count(N/(2*i) * 2 + 1) * t;
    }
    return ans;
}

int main () {
    int cas = 1;
    priTable(maxn);
    while (scanf("%lld", &N) == 1 && N) {
        printf("Crystal %d: %lld\n", cas++, solve());
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值