|
|
|
|
堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。
(1)用大根堆排序的基本思想
① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区
② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
③ 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。
……
直到无序区只有一个元素为止。
(2)大根堆排序算法的基本操作:
① 初始化操作:将R[1..n]构造为初始堆;
② 每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。
注意:
①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。
②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。堆排序和直接选择排序相反:在任何时刻,堆排序中无序区总是在有序区之前,且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止。
3.具体算法
template<class T>
heapsort(T r[],int n) //n为文件的实际记录数,r[0]没有使用
{ int i,m;node x;
for(i=/2;i>=1;i--)heappass(r,i,n); //初建堆
//以下for语句为输出堆顶元素、调整堆操作
for(m=n-1;m>=1;m--)//逻辑堆尾下标m不断变小
{ cout<<r[1].key<<" ";
x=r[1];r[1]=r[m+1];r[m+1]=x; //堆顶与堆尾元素对换
heappass(r,1,m);//恢复堆
}
cout<<r[1].key<<endl;
} //heapsort
4.算法时间复杂度
堆排序中 heap 算法的时间复杂度与堆所对应的完全二叉树的树高度 log2n 相关。而 heapsort 中对 heap 的调用数量级为n,所以堆排序的整个时间复杂度为O(nlog2n) 。并且堆排序是不稳定的。




420

被折叠的 条评论
为什么被折叠?



