ReentrantReadWriteLock是ReadWriteLock的一个实现类,具有和ReentrantLock相似的语义。但注意:并不是Lock、或者ReentrantLock的子类或实现,但ReadLock和WriteLock实现了Lock接口。
ReadWriteLock源码如下:
/**
* A ReadWriteLock维护一对关联的locks ,一个用于只读操作,一个用于写入。
* read lock可以由多个阅读器线程同时进行,只要没有作者。 write lock是独家的
*/
public interface ReadWriteLock {
Lock readLock();
Lock writeLock();
}
ReentrantReadWriteLock具有以下属性:
- 获得锁顺序
锁访问时,此类不会强加读锁或写锁的优先顺序。 但是,它支持可选的公平策略。
(1)非公平模式(默认)
当被构造为不公平(默认)时,读写锁定的顺序是未指定的,只受到重入限制。 一个不公平的锁,持续的竞争可能无限期地推迟一个或更多的读取或写入线程,但是通常会比一个公平的锁有更高的吞吐量。
(2)公平模式
当公平地构建时,线程使用近似到达顺序的策略来竞争锁。 当释放当前持有的锁时,最长等待的单个写入线程将被分配写入锁,或者如果有一组读取线程等待时间比所有等待写入线程长,则该组将被分配读取锁。
一个线程尝试获取公平读锁(不可重入)时,如果写锁定或有等待的写入程序线程时将被阻塞,直到最老的当前正在等待的写入程序线程获取并释放写入锁。 当然,如果一个等待的写入线程放弃了等待,留下一个或多个读取线程作为队列中最长的服务器,其中写锁定空闲,那么这些读取线程将被分配读取锁。
尝试获取公平写入锁(非重入)的线程将阻塞,除非读锁定和写锁定都是空闲的(这意味着没有等待线程)。(PS:无阻塞ReadLock.tryLock()
和WriteLock.tryLock()
方法不遵从公平锁设置,如果可能,将立即获取锁定,而不管等待线程。)- 可重入
ReentrantReadWriteLock允许读取和写入重复获取读锁或写锁,类似于ReentrantLock 。 在写入线程所持有的所有写入锁被释放之前,不允许获取非重入读锁。
另外,写入线程可以获取读锁,但反过来不行。 在其他应用程序中,当写入锁在调用或回调到执行读取锁的方法时,重入可以很有用。 如果读取线程尝试获取写入锁定,它将永远不会成功。- 锁定降级
重入还允许从写锁到读锁的降级,通过获取写锁,然后读锁,然后释放写锁。 但是,从读锁定升级到写锁是不可能的。- 中断锁获取
读取锁定和写入锁定在锁获取期间都支持中断。- Condition支持
写入锁提供了一个Condition实现,类似于ReentrantLock.newCondition()
的实现 。 这个Condition当然只能用于写锁。
读锁不支持Condition,readLock().newCondition()将抛出UnsupportedOperationException
。- 仪器仪表
这个类支持确定锁是否被持有或争用的方法。 这些方法设计用于监控系统状态,而不是进行同步控制。
ReentrantReadWriteLock 也是基于AQS
实现的,它的自定义同步器(继承AQS)需要在同步状态(一个整型变量state)上维护多个读线程和一个写线程的状态,使得该状态的设计成为读写锁实现的关键。如果在一个整型变量上维护多种状态,就一定需要“按位切割使用”这个变量,读写锁将变量切分成了两个部分,高16位表示读,低16位表示写
。此锁最多支持65535个递归写锁和65535个读锁。 尝试超过这些限制导致锁定方法抛出Error错误。
示例用法: 这是一个代码草图,显示了如何在更新缓存后执行锁定降级(在以非嵌套方式处理多个锁时,异常处理尤为棘手):
class CachedData {
Object data;
volatile boolean cacheValid;
final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
void processCachedData() {
rwl.readLock().lock();
if (!cacheValid) {
// Must release read lock before acquiring write lock
rwl.readLock().unlock();
rwl.writeLock().lock();
try {
// Recheck state because another thread might have
// acquired write lock and changed state before we did.
if (!cacheValid) {
data = ...
cacheValid = true;
}
// Downgrade by acquiring read lock before releasing write lock
rwl.readLock().lock();
} finally {
rwl.writeLock().unlock(); // Unlock write, still hold read
}
}
try {
use(data);
} finally {
rwl.readLock().unlock();
}
}
}
ReentrantReadWriteLocks可用于改进某些集合类型的某些用途中的并发性。 这通常只有当集合比较大,读线程比写线程多,并且需要在开销上超过同步开销的操作。 例如,这里是一个使用TreeMap的类,该类将被大量并且被同时访问。
class RWDictionary {
private final Map<String, Data> m = new TreeMap<String, Data>();
private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
private final Lock r = rwl.readLock();
private final Lock w = rwl.writeLock();
public Data get(String key) {
r.lock();
try { return m.get(key); }
finally { r.unlock(); }
}
public String[] allKeys() {
r.lock();
try { return m.keySet().toArray(); }
finally { r.unlock(); }
}
public Data put(String key, Data value) {
w.lock();
try { return m.put(key, value); }
finally { w.unlock(); }
}
public void clear() {
w.lock();
try { m.clear(); }
finally { w.unlock(); }
}
}}
接下来,我们直接看源码,我们依然分为几个部分:Sync、NonfairSync、FairSync、ReadLock、WriteLock、和ReentrantReadWriteLock。
一、Sync源码
/**
* Synchronization implementation for ReentrantReadWriteLock.
* Subclassed into fair and nonfair versions.
*/
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 6317671515068378041L;
static final int SHARED_SHIFT = 16;
static final int SHARED_UNIT = (1 << SHARED_SHIFT);
static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1;
static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
/** 取高16位为读同步状态 */
static int sharedCount(int c) { return c >>> SHARED_SHIFT; }
/** 取低16位为写同步状态 */
static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
static final class HoldCounter {
int count = 0;
// Use id, not reference, to avoid garbage retention
final long tid = getThreadId(Thread.currentThread());
}
static final class ThreadLocalHoldCounter
extends ThreadLocal<HoldCounter> {
public HoldCounter initialValue() {
return new HoldCounter();
}
}
private transient ThreadLocalHoldCounter readHolds;
private transient HoldCounter cachedHoldCounter;
private transient Thread firstReader = null;
private transient int firstReaderHoldCount;
Sync() {
readHolds = new ThreadLocalHoldCounter();
setState(getState()); // ensures visibility of readHolds
}
//由子类FairSync和NonfairSync重写,非公平锁返回true,不阻塞;公平锁如果是第一个也不阻塞,
abstract boolean readerShouldBlock();
abstract boolean writerShouldBlock();
protected final boolean tryRelease(int releases) {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int nextc = getState() - releases;
boolean free = exclusiveCount(nextc) == 0;
if (free)
setExclusiveOwnerThread(null);
setState(nextc);
return free;
}
protected final boolean tryAcquire(int acquires) {
Thread current = Thread.currentThread();
int c = getState();
int w = exclusiveCount(c);
if (c != 0) {
// (Note: if c != 0 and w == 0 then shared count != 0)
//存在读锁或当前线程不是已获取写锁的线程,返回false
if (w == 0 || current != getExclusiveOwnerThread())
return false;
//判断同一线程获取写锁是否超过最大次数,支持可重入
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");
// Reentrant acquire
setState(c + acquires);
return true;
}
//此时c=0,读锁和写锁都没有被获取
if (writerShouldBlock() ||
!compareAndSetState(c, c + acquires))
return false;
setExclusiveOwnerThread(current);
return true;
}
protected final boolean tryReleaseShared(int unused) {
Thread current = Thread.currentThread();
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
if (firstReaderHoldCount == 1)
firstReader = null;
else
firstReaderHoldCount--;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
rh = readHolds.get();
int count = rh.count;
if (count <= 1) {
readHolds.remove();
if (count <= 0)
throw unmatchedUnlockException();
}
--rh.count;
}
for (;;) {
int c = getState();
int nextc = c - SHARED_UNIT;
if (compareAndSetState(c, nextc))
// Releasing the read lock has no effect on readers,
// but it may allow waiting writers to proceed if
// both read and write locks are now free.
return nextc == 0;
}
}
private IllegalMonitorStateException unmatchedUnlockException() {
return new IllegalMonitorStateException(
"attempt to unlock read lock, not locked by current thread");
}
protected final int tryAcquireShared(int unused) {
Thread current = Thread.currentThread();
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return -1;
int r = sharedCount(c);
if (!readerShouldBlock() &&
r < MAX_COUNT &&
compareAndSetState(c, c + SHARED_UNIT)) {
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return 1;
}
return fullTryAcquireShared(current);
}
final int fullTryAcquireShared(Thread current) {
HoldCounter rh = null;
for (;;) {
int c = getState();
if (exclusiveCount(c) != 0) {
if (getExclusiveOwnerThread() != current)
return -1;
// else we hold the exclusive lock; blocking here
// would cause deadlock.
} else if (readerShouldBlock()) {
// Make sure we're not acquiring read lock reentrantly
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
} else {
if (rh == null) {
rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current)) {
rh = readHolds.get();
if (rh.count == 0)
readHolds.remove();
}
}
if (rh.count == 0)
return -1;
}
}
if (sharedCount(c) == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {
if (sharedCount(c) == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
if (rh == null)
rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
cachedHoldCounter = rh; // cache for release
}
return 1;
}
}
}
final boolean tryWriteLock() {
Thread current = Thread.currentThread();
int c = getState();
if (c != 0) {
int w = exclusiveCount(c);
if (w == 0 || current != getExclusiveOwnerThread())
return false;
if (w == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
}
if (!compareAndSetState(c, c + 1))
return false;
setExclusiveOwnerThread(current);
return true;
}
final boolean tryReadLock() {
Thread current = Thread.currentThread();
for (;;) {
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return false;
int r = sharedCount(c);
if (r == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != getThreadId(current))
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return true;
}
}
}
protected final boolean isHeldExclusively() {
// While we must in general read state before owner,
// we don't need to do so to check if current thread is owner
return getExclusiveOwnerThread() == Thread.currentThread();
}
// Methods relayed to outer class
final ConditionObject newCondition() {
return new ConditionObject();
}
final Thread getOwner() {
// Must read state before owner to ensure memory consistency
return ((exclusiveCount(getState()) == 0) ?
null :
getExclusiveOwnerThread());
}
final int getReadLockCount() {
return sharedCount(getState());
}
final boolean isWriteLocked() {
return exclusiveCount(getState()) != 0;
}
final int getWriteHoldCount() {
return isHeldExclusively() ? exclusiveCount(getState()) : 0;
}
final int getReadHoldCount() {
if (getReadLockCount() == 0)
return 0;
Thread current = Thread.currentThread();
if (firstReader == current)
return firstReaderHoldCount;
HoldCounter rh = cachedHoldCounter;
if (rh != null && rh.tid == getThreadId(current))
return rh.count;
int count = readHolds.get().count;
if (count == 0) readHolds.remove();
return count;
}
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
readHolds = new ThreadLocalHoldCounter();
setState(0); // reset to unlocked state
}
final int getCount() { return getState(); }
}
二、NonfairSync源码
static final class NonfairSync extends Sync {
private static final long serialVersionUID = -8159625535654395037L;
//NonfairSync中直接返回false,可插队。
final boolean writerShouldBlock() {
return false; // writers can always barge
}
final boolean readerShouldBlock() {
return apparentlyFirstQueuedIsExclusive();
}
}
三、FairSync源码
static final class FairSync extends Sync {
private static final long serialVersionUID = -2274990926593161451L;
//FairSync中需要判断是否有前驱节点,如果有则返回false,否则返回true。遵循FIFO
final boolean writerShouldBlock() {
return hasQueuedPredecessors();
}
//FairSync中需要判断是否有前驱节点,如果有则返回true,否则返回false。遵循FIFO
final boolean readerShouldBlock() {
return hasQueuedPredecessors();
}
}
四、ReadLock源码
public static class ReadLock implements Lock, java.io.Serializable {
private static final long serialVersionUID = -5992448646407690164L;
private final Sync sync;
protected ReadLock(ReentrantReadWriteLock lock) {
sync = lock.sync;
}
public void lock() {
sync.acquireShared(1);
}
public void lockInterruptibly() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
public boolean tryLock() {
return sync.tryReadLock();
}
public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
public void unlock() {
sync.releaseShared(1);
}
public Condition newCondition() {
throw new UnsupportedOperationException();
}
public String toString() {
int r = sync.getReadLockCount();
return super.toString() +
"[Read locks = " + r + "]";
}
}
五、WriteLock源码
public static class WriteLock implements Lock, java.io.Serializable {
private static final long serialVersionUID = -4992448646407690164L;
private final Sync sync;
protected WriteLock(ReentrantReadWriteLock lock) {
sync = lock.sync;
}
public void lock() {
sync.acquire(1);
}
public void lockInterruptibly() throws InterruptedException {
sync.acquireInterruptibly(1);
}
public boolean tryLock( ) {
return sync.tryWriteLock();
}
public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}
public void unlock() {
sync.release(1);
}
public Condition newCondition() {
return sync.newCondition();
}
public String toString() {
Thread o = sync.getOwner();
return super.toString() + ((o == null) ?
"[Unlocked]" :
"[Locked by thread " + o.getName() + "]");
}
public boolean isHeldByCurrentThread() {
return sync.isHeldExclusively();
}
public int getHoldCount() {
return sync.getWriteHoldCount();
}
}
六、ReentrantReadWriteLock源码
public class ReentrantReadWriteLock
implements ReadWriteLock, java.io.Serializable {
private static final long serialVersionUID = -6992448646407690164L;
/** Inner class providing readlock */
private final ReentrantReadWriteLock.ReadLock readerLock;
/** Inner class providing writelock */
private final ReentrantReadWriteLock.WriteLock writerLock;
/** Performs all synchronization mechanics */
final Sync sync;
public ReentrantReadWriteLock() {
this(false);
}
public ReentrantReadWriteLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
readerLock = new ReadLock(this);
writerLock = new WriteLock(this);
}
public ReentrantReadWriteLock.WriteLock writeLock() { return writerLock; }
public ReentrantReadWriteLock.ReadLock readLock() { return readerLock; }
abstract static class Sync extends AbstractQueuedSynchronizer {// ... 省略 ...}
static final class NonfairSync extends Sync {// ... 省略 ...}
static final class FairSync extends Sync {// ... 省略 ...}
public static class ReadLock implements Lock, java.io.Serializable {// ... 省略 ...}
public static class WriteLock implements Lock, java.io.Serializable {// ... 省略 ...}
public final boolean isFair() {
return sync instanceof FairSync;
}
protected Thread getOwner() {
return sync.getOwner();
}
public int getReadLockCount() {
return sync.getReadLockCount();
}
public boolean isWriteLocked() {
return sync.isWriteLocked();
}
public boolean isWriteLockedByCurrentThread() {
return sync.isHeldExclusively();
}
public int getWriteHoldCount() {
return sync.getWriteHoldCount();
}
public int getReadHoldCount() {
return sync.getReadHoldCount();
}
protected Collection<Thread> getQueuedWriterThreads() {
return sync.getExclusiveQueuedThreads();
}
protected Collection<Thread> getQueuedReaderThreads() {
return sync.getSharedQueuedThreads();
}
public final boolean hasQueuedThreads() {
return sync.hasQueuedThreads();
}
public final boolean hasQueuedThread(Thread thread) {
return sync.isQueued(thread);
}
public final int getQueueLength() {
return sync.getQueueLength();
}
protected Collection<Thread> getQueuedThreads() {
return sync.getQueuedThreads();
}
public boolean hasWaiters(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
}
public int getWaitQueueLength(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);
}
protected Collection<Thread> getWaitingThreads(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject)condition);
}
public String toString() {
int c = sync.getCount();
int w = Sync.exclusiveCount(c);
int r = Sync.sharedCount(c);
return super.toString() +
"[Write locks = " + w + ", Read locks = " + r + "]";
}
static final long getThreadId(Thread thread) {
return UNSAFE.getLongVolatile(thread, TID_OFFSET);
}
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long TID_OFFSET;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> tk = Thread.class;
TID_OFFSET = UNSAFE.objectFieldOffset
(tk.getDeclaredField("tid"));
} catch (Exception e) {
throw new Error(e);
}
}
}