问题描述:求数组的连续子序列的最大和
程序思路:最大连续子序列和只可能是以位置1~n中某个位置结尾。当遍历第i个元素时,判断在它前面的连续子序列和是否大于0。如果大于0,则以位置i结尾的最大连续子序列和为元素i和前面的连续子序列和相加。否则,以位置i结尾的最大连续子序列和为元素i前面的和。
这是之前思考的解题思路。后来,总是提交不通过,然后上网查,网上说,最大连续子序列不一定从第一个位置开始(虽然现在也不清楚为什么,不过从测试的数据来看,是可以不从第一个位置开始的),然后从百度上找个一个来看,自己也理解了。
#include<iostream>
using namespace std;
int main()
{
int n;
cin>>n;//输入测试组数
for(int j=1;j<=n;j++)
{
if(j!=1)
cout<<endl;//控制输出格式,使当有下一个测试数据时,中间空一行
int nums,c,cur_sum=0,start=0,end=nums-1,temp=1,max=-1;
cin>>nums;//输入该组的数据个数
for(int i=1;i<=nums;i++)
{
cin>>c;//依次输入数据
cur_sum+=c;//依次累加数据
if(cur_sum>=max)//当前总和大于之前总和
{
start=temp;
end=i;
max=cur_sum;
}
if(cur_sum<0)//当前总和小于零
{
cur_sum=0;//当前总和归零,temp向后加1
temp=i+1;
}
}
cout<<"Case "<<j<<":"<<endl;//输出格式
cout<<max<<" "<<start<<" "<<end<<endl;
}
}
万事开头难,希望自己可以坚持下去。