题意:将给定的所有空间站用最小代价连接起来,不过空间站可以重合或相交。
思路:对于不相交的情况,两个空间站的距离就是 圆心距离-两个空间站的半径和,相交或重合的情况就把距离看作0处理。把空间站作为图中的顶点,两个空间站的距离作为边,求一次最小生成树即可得到结果。
注意:在poj上g++输出double要用%f 不然会wrong.
代码:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
using namespace std;
const int maxn = 105;
const int maxm = 5005;
struct Station{
double x,y,z;
double r;
};
struct Edge{
int u,v;
double w;
bool operator < (const Edge &b) const{
return w < b.w;
}
};
int n,m;
Station s[maxn];
Edge a[maxm];
int p[maxn];
void UFset(){
for(int i = 0; i < n; i++){
p[i] = -1;
}
}
int Find(int x){
return p[x] >= 0 ? p[x] = Find(p[x]) : x;
}
void Union(int r1, int r2){
r1 = Find(r1);
r2 = Find(r2);
int t = p[r1] + p[r2];
if(p[r1] > p[r2]){
p[r1] = r2;
p[r2] = t;
}
else{
p[r2] = r1;
p[r1] = t;
}
}
bool Input(){
cin>>n;
if(n == 0)
return false;
m = 0;
for(int i = 0; i < n; i++){
cin>>s[i].x>>s[i].y>>s[i].z;
cin>>s[i].r;
}
return true;
}
double Dis(Station &a, Station &b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)+(a.z-b.z)*(a.z-b.z))-a.r-b.r;
}
void Convert(){
for(int i = 0; i < n-1; i++){
for(int j = i+1; j < n; j++){
a[m].u = i;
a[m].v = j;
double d = Dis(s[i],s[j]);
a[m].w = (d <= 0 ? 0.0 : d);
m++;
}
}
}
double Kruskal(){
double sum = 0;
int num = 0;
UFset();
sort(a,a+m);
for(int i = 0; i < m; i++){
int u = a[i].u, v = a[i].v;
if(Find(u) != Find(v)){
Union(u,v);
sum += a[i].w;
num++;
}
if(num >= n-1)
break;
}
return sum;
}
int main(){
while(Input()){
Convert();
printf("%.3lf\n",Kruskal());
}
return 0;
}