PLAN: step one

本文提供了从Unix/Linux操作到Web开发再到系统编程的快速学习路径,涵盖了Shell命令、Web前端技术、C语言及操作系统调用等内容,适合希望快速掌握信息技术核心技能的学习者。

1. 熟悉Unix/Linux Shell和常见的命令行  (start : 7.9 - end: 7.12)

1.文件系统结构和基本操作 ls/chmod/chown/rm/find/ln/cat/mount/mkdir/tar/gzip …

2.学会使用一些文本操作命令 sed/awk/grep/tail/less/more …

3.学会使用一些管理命令 ps/top/lsof/netstat/kill/tcpdump/iptables/dd…

4.了解/etc目录下的各种配置文章,学会查看/var/log下的系统日志,以及/proc下的系统运行信息

5.了解正则表达式,使用正则表达式来查找文件。(grep 简单查找文件内容,find 简单查找文件)

 

2. 学习Web基础(HTML/CSS/JS) + 服务器端技术 (LAMP) (start : 7.12 )

1. 学习HTML基本语法 

2. 学习CSS如何选中HTML元素并应用一些基本样式(关键词:box model)

3. 学会用  Firefox + Firebug 或 chrome 查看你觉得很炫的网页结构,并动态修改。

4. 学习使用 Javascript操纵HTML 元件。理解DOM和动态网页(http://oreilly.com/catalog/9780596527402) 网上有免费的章节,足够用了。或参看 DOM 。

5. 学会用  Firefox + Firebug 或 chrome 调试Javascript代码(设置断点,查看变量,性能,控制台等)

6. 学习PHP,让后台PHP和前台HTML进行数据交互,对服务器相应浏览器请求形成初步认识。实现一个表单提交和反显的功能。

7. 把PHP连接本地或者远程数据库 MySQL(MySQL 和 SQL现学现用够了)

8. 跟完一个名校的网络编程课程(例如:http://www.stanford.edu/~ouster/cgi-bin/cs142-fall10/index.php ) 不要觉得需要多于一学期时间,大学生是全职一学期选3-5门课,你业余时间一定可以跟上

9. 学习一个javascript库(例如jQuery 或 ExtJS)+  Ajax (异步读入一个服务器端图片或者数据库内容)+JSON数据格式。

10. HTTP: The Definitive Guide 读完前4章你就明白你每天上网用浏览器的时候发生的事情了(proxy, gateway, browsers)

11. 做个小网站(例如:一个小的留言板,支持用户登录,Cookie/Session,增、删、改、查,上传图片附件,分页显示)

12.买个域名,租个空间,做个自己的网站。

 

3、 C语言和操作系统调用

1. C程序设计语言

2. 学习Unix/Linux系统调用(Unix高级环境编程

  • 用这些系统知识操作一下文件系统,用户(实现一个可以拷贝目录树的小程序)
  • 用fork/wait/waitpid写一个多进程的程序,用pthread写一个多线程带同步或互斥的程序。多进程多进程购票的程序。
  • 用signal/kill/raise/alarm/pause/sigprocmask实现一个多进程间的信号量通信的程序。
  • 学会使用gcc和gdb来编程和调试程序(参看我的《用gdb调试程序》)
  • 学会使用makefile来编译程序。(参看我的《跟我一起写makefile》)
  • IPC和Socket的东西可以放到高级中来实践。

3. 学习Windows SDK编程(Windows 程序设计 MFC程序设计

  • 写一个窗口,了解WinMain/WinProcedure,以及Windows的消息机制。
  • 写一些程序来操作Windows SDK中的资源文件或是各种图形控件,以及作图的编程。
  • 学习如何使用MSDN查看相关的SDK函数,各种WM_消息以及一些例程。
  • 这本书中有很多例程,在实践中请不要照抄,试着自己写一个自己的例程。

 

4、 算法

1. 算法导论视频

2. 每天 SZU OJ刷题  > 2

[2025-06-24 01:44:32]收→T:step:1, startAng:90820, dir:1, stop:0, adjust:90000, Bais:90000,0 branch:V0.3.6 [2025-06-24 01:44:33]收→V:25999,C:974,c_c:30,Mode:3 L_Pump:287,L_PS:117,L_PTS:120,L_PP:257 R_Pump:240,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:102,L_WS:126,L_WTS:121,L_WPP:306 R_Wheel:113,R_WS:118,R_WTS:121,R_WPP:298 ir_ML:3,IR_MR:145,IR_SL:2,IR_SR:3,End X:-109, Y:189, Z:-10086 errType: 0. [2025-06-24 01:44:33]收→T:step:1, startAng:90439, dir:1, stop:0, adjust:90000, Bais:90000,0 [2025-06-24 01:44:34]收→V:25999,C:951,c_c:30,Mode:3 L_Pump:288,L_PS:117,L_PTS:120,L_PP:257 R_Pump:250,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:105,L_WS:121,L_WTS:121,L_WPP:305 R_Wheel:122,R_WS:124,R_WTS:121,R_WPP:301 ir_ML:3,IR_MR:33,IR_SL:10,IR_SR:9,End X:-83, Y:112, Z:-10198 errType: 0. [2025-06-24 01:44:34]收→T:step:1, startAng:90380, dir:1, stop:0, adjust:90000, Bais:90000,0 [2025-06-24 01:44:35]收→branch:V0.3.6 [2025-06-24 01:44:35]收→V:26008,C:951,c_c:30,Mode:3 L_Pump:285,L_PS:117,L_PTS:120,L_PP:257 R_Pump:249,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:122,L_WS:121,L_WTS:121,L_WPP:302 R_Wheel:116,R_WS:119,R_WTS:121,R_WPP:306 ir_ML:3,IR_MR:51,IR_SL:16,IR_SR:16,End X:-103, Y:53, Z:-10222 errType: 0. [2025-06-24 01:44:35]收→T:step:1, startAng:90329, dir:1, stop:0, adjust:90000, Bais:90000,0 [2025-06-24 01:44:36]收→V:26008,C:894,c_c:30,Mode:3 L_Pump:284,L_PS:117,L_PTS:120,L_PP:257 R_Pump:247,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:118,L_WS:123,L_WTS:121,L_WPP:303 R_Wheel:108,R_WS:120,R_WTS:121,R_WPP:309 ir_ML:1,IR_MR:4,IR_SL:16,IR_SR:16,End X:-104, Y:24, Z:-10065 errType: 0. [2025-06-24 01:44:36]收→T:step:1, startAng:90560, dir:1, stop:0, adjust:90000, Bais:90000,0 [2025-06-24 01:44:37]收→branch:V0.3.6 [2025-06-24 01:44:37]收→V:26008,C:944,c_c:30,Mode:3 L_Pump:280,L_PS:117,L_PTS:120,L_PP:257 R_Pump:247,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:108,L_WS:119,L_WTS:121,L_WPP:307 R_Wheel:122,R_WS:126,R_WTS:121,R_WPP:305 ir_ML:15,IR_MR:162,IR_SL:3,IR_SR:15,End X:-173, Y:55, Z:-10099 errType: 0. [2025-06-24 01:44:37]收→T:step:1, startAng:90579, dir:1, stop:0, adjust:90000, Bais:90000,0 [2025-06-24 01:44:38]收→V:25999,C:909,c_c:30,Mode:3 L_Pump:281,L_PS:117,L_PTS:120,L_PP:257 R_Pump:250,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:116,L_WS:119,L_WTS:121,L_WPP:305 R_Wheel:123,R_WS:118,R_WTS:121,R_WPP:306 ir_ML:3,IR_MR:32,IR_SL:2,IR_SR:15,End X:-99, Y:120, Z:-10079 errType: 0. T:step:1, startAng:90770, dir:1, stop:0, adjust:90000, Bais:90000,0 [2025-06-24 01:44:39]收→branch:V0.3.6 [2025-06-24 01:44:39]收→T:step:1, startAng:91100, dir:1, stop:0, adjust:90000, Bais:90000,0 V:26008,C:963,c_c:30,Mode:3 L_Pump:284,L_PS:117,L_PTS:120,L_PP:257 R_Pump:245,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:116,L_WS:122,L_WTS:121,L_WPP:315 R_Wheel:116,R_WS:121,R_WTS:121,R_WPP:295 ir_ML:17,IR_MR:130,IR_SL:16,IR_SR:4,End X:-90, Y:97, Z:-10156 errType: 0. [2025-06-24 01:44:40]收→T:step:1, startAng:90860, dir:1, stop:0, adjust:90000, Bais:90000,0 [2025-06-24 01:44:41]收→V:26008,C:928,c_c:30,Mode:3 L_Pump:283,L_PS:117,L_PTS:120,L_PP:257 R_Pump:245,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:123,L_WS:121,L_WTS:121,L_WPP:303 R_Wheel:114,R_WS:121,R_WTS:121,R_WPP:307 ir_ML:2,IR_MR:146,IR_SL:16,IR_SR:3,End X:-25, Y:36, Z:-10097 errType: 0. [2025-06-24 01:44:41]收→branch:V0.3.6 [2025-06-24 01:44:42]收→T:step:1, startAng:91040, dir:1, stop:0, adjust:90000, Bais:90000,0 [2025-06-24 01:44:42]收→V:25999,C:951,c_c:30,Mode:3 L_Pump:286,L_PS:117,L_PTS:120,L_PP:257 R_Pump:240,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:128,L_WS:123,L_WTS:121,L_WPP:321 R_Wheel:131,R_WS:115,R_WTS:121,R_WPP:295 ir_ML:1,IR_MR:65,IR_SL:17,IR_SR:15,End X:-123, Y:64, Z:-10254 errType: 0. [2025-06-24 01:44:43]收→T:step:1, startAng:91170, dir:1, stop:0, adjust:90000, Bais:90000,0 [2025-06-24 01:44:43]收→V:25999,C:863,c_c:30,Mode:3 L_Pump:284,L_PS:117,L_PTS:120,L_PP:257 R_Pump:241,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:110,L_WS:123,L_WTS:121,L_WPP:315 R_Wheel:117,R_WS:118,R_WTS:121,R_WPP:296 ir_ML:3,IR_MR:17,IR_SL:2,IR_SR:15,End X:-146, Y:135, Z:-10115 errType: 0. [2025-06-24 01:44:43]收→branch:V0.3.6 [2025-06-24 01:44:44]收→T:step:1, startAng:90710, dir:1, stop:0, adjust:90000, Bais:90000,0 [2025-06-24 01:44:44]收→V:26008,C:959,c_c:30,Mode:3 L_Pump:282,L_PS:117,L_PTS:120,L_PP:257 R_Pump:239,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:122,L_WS:122,L_WTS:121,L_WPP:305 R_Wheel:118,R_WS:120,R_WTS:121,R_WPP:309 ir_ML:3,IR_MR:33,IR_SL:16,IR_SR:16,End X:-106, Y:118, Z:-10095 errType: 0. [2025-06-24 01:44:45]收→T:step:1, startAng:90829, dir:1, stop:0, adjust:90000, Bais:90000,0 [2025-06-24 01:44:45]收→V:25999,C:970,c_c:30,Mode:3 L_Pump:282,L_PS:117,L_PTS:120,L_PP:257 R_Pump:240,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:120,L_WS:122,L_WTS:121,L_WPP:312 R_Wheel:116,R_WS:119,R_WTS:121,R_WPP:295 ir_ML:2,IR_MR:129,IR_SL:16,IR_SR:15,End X:-106, Y:122, Z:-10213 errType: 0. [2025-06-24 01:44:45]收→branch:V0.3.6 [2025-06-24 01:44:46]收→T:step:1, startAng:90850, dir:1, stop:0, adjust:90000, Bais:90000,0 [2025-06-24 01:44:46]收→V:26008,C:871,c_c:30,Mode:3 L_Pump:286,L_PS:108,L_PTS:120,L_PP:262 R_Pump:241,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:112,L_WS:121,L_WTS:121,L_WPP:311 R_Wheel:115,R_WS:120,R_WTS:121,R_WPP:300 ir_ML:16,IR_MR:82,IR_SL:16,IR_SR:5,End X:-125, Y:218, Z:-10116 errType: 0. [2025-06-24 01:44:47]收→T:step:1, startAng:91150, dir:1, stop:0, adjust:90000, Bais:90000,0 [2025-06-24 01:44:47]收→V:25999,C:967,c_c:30,Mode:3 L_Pump:285,L_PS:117,L_PTS:120,L_PP:257 R_Pump:239,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:121,L_WS:125,L_WTS:121,L_WPP:301 R_Wheel:109,R_WS:118,R_WTS:121,R_WPP:304 ir_ML:3,IR_MR:4,IR_SL:3,IR_SR:4,End X:-99, Y:129, Z:-10088 errType: 0. [2025-06-24 01:44:47]收→branch:V0.3.6 [2025-06-24 01:44:48]收→T:step:1, startAng:90990, dir:1, stop:0, adjust:90000, Bais:90000,0 [2025-06-24 01:44:48]收→V:25999,C:932,c_c:30,Mode:3 L_Pump:286,L_PS:108,L_PTS:120,L_PP:262 R_Pump:239,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:116,L_WS:127,L_WTS:121,L_WPP:308 R_Wheel:122,R_WS:116,R_WTS:121,R_WPP:302 ir_ML:3,IR_MR:32,IR_SL:8,IR_SR:9,End X:-119, Y:213, Z:-10080 errType: 0. [2025-06-24 01:44:49]收→T:step:1, startAng:90720, dir:1, stop:0, adjust:90000, Bais:90000,0 [2025-06-24 01:44:50]收→branch:V0.3.6 V:25999,C:878,c_c:30,Mode:3 L_Pump:288,L_PS:117,L_PTS:120,L_PP:257 R_Pump:239,R_PS:108,R_PTS:120,R_PP:265 L_Wheel:112,L_WS:122,L_WTS:121,L_WPP:306 R_Wheel:122,R_WS:119,R_WTS:121,R_WPP:305 ir_ML:2,IR_MR:82,IR_SL:16,IR_SR:15,End X:11, Y:241, Z:-10106 errType: 0. T:step:1, startAng:90610, dir:1, stop:0, adjust:90000, Bais:90000,0 [2025-06-24 01:44:51]收→T:step:1, startAng:90790, dir:1, stop:0, adjust:90000, Bais:90000,0 V:25999,C:947,c_c:30,Mode:3 L_Pump:285,L_PS:108,L_PTS:120,L_PP:262 R_Pump:240,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:113,L_WS:119,L_WTS:121,L_WPP:309 R_Wheel:132,R_WS:121,R_WTS:121,R_WPP:306 ir_ML:533,IR_MR:612,IR_SL:16,IR_SR:15,End X:145, Y:263, Z:-10151 errType: 0. [2025-06-24 01:44:51]收→get wall flag ONE :1 get wall flag ONE :0 line clean func stop.turn_len:1,Line [2025-06-24 01:44:51]收→_time:46505,line_num:3,stop:1,Len:8267 line clean 3 side ir data: 11, 11, 0 [2025-06-24 01:44:52]收→T:step:2, startAng:90900, dir:1, stop:1, adjust:90000, Bais:90000,0 branch:V0.3.6 [2025-06-24 01:44:52]收→V:26026,C:740,c_c:30,Mode:3 L_Pump:288,L_PS:117,L_PTS:120,L_PP:257 R_Pump:238,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:11,L_WS:0,L_WTS:55,L_WPP:51 R_Wheel:19,R_WS:0,R_WTS:55,R_WPP:50 ir_ML:3094,IR_MR:3596,IR_SL:12,IR_SR:16,End X:296, Y:211, Z:-10101 errType: 0. [2025-06-24 01:44:52]收→get L max :3126 [2025-06-24 01:44:52]收→get L_N max :3659 [2025-06-24 01:44:53]收→T:step:2, startAng:91530, dir:1, stop:1, adjust:90000, Bais:90000,0 [2025-06-24 01:44:53]收→V:26008,C:917,c_c:30,Mode:3 L_Pump:284,L_PS:108,L_PTS:120,L_PP:262 R_Pump:245,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:81,L_WS:37,L_WTS:33,L_WPP:127 R_Wheel:84,R_WS:32,R_WTS:33,R_WPP:123 ir_ML:2117,IR_MR:2728,IR_SL:3,IR_SR:16,End X:600, Y:96, Z:-10061 errType: 0. [2025-06-24 01:44:54]收→T:step:2, startAng:93409, dir:1, stop:1, adjust:90000, Bais:90000,0 [2025-06-24 01:44:54]收→branch:V0.3.6 [2025-06-24 01:44:54]收→V:25999,C:813,c_c:30,Mode:3 L_Pump:280,L_PS:117,L_PTS:120,L_PP:257 R_Pump:258,R_PS:117,R_PTS:120,R_PP:260 L_Wheel:129,L_WS:28,L_WTS:0,L_WPP:0 R_Wheel:99,R_WS:24,R_WTS:0,R_WPP:0 ir_ML:2070,IR_MR:2514,IR_SL:17,IR_SR:18,End X:406, Y:191, Z:-10084 errType: 0. [2025-06-24 01:44:54]收→line clean step2 to 6. Line Clean LineStopAngle : 93400, 3400 App_SweepCleanLineInfoDeal: 0, 0, 2, 2 App_SweepCleanLineInfoDeal Ok flag: 1, 1 App_SweepCleanLineInfoDeal.reset..2600, 1 G_N:step:0, A:93409,dir:1,willA:270000,newWall:0,wall_down:270810,front_len:1 App_SweepGotoLine Step 1: 173410, 0, 468 [2025-06-24 01:44:55]收→V:26043,C:567,c_c:30,Mode:3 L_Pump:230,L_PS:0,L_PTS:0,L_PP:0 R_Pump:202,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:149,L_WS:0,L_WTS:-22,L_WPP:117 R_Wheel:17,R_WS:72,R_WTS:66,R_WPP:219 ir_ML:2116,IR_MR:2603,IR_SL:17,IR_SR:3,End X:449, Y:174, Z:-10092 errType: 0. [2025-06-24 01:44:55]收→ G_N:step:2, A:93970,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:44:56]收→branch:V0.3.6 [2025-06-24 01:44:56]收→V:26061,C:425,c_c:30,Mode:3 L_Pump:80,L_PS:0,L_PTS:0,L_PP:0 R_Pump:52,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:99,L_WS:-37,L_WTS:-22,L_WPP:103 R_Wheel:81,R_WS:71,R_WTS:66,R_WPP:195 ir_ML:2996,IR_MR:2728,IR_SL:17,IR_SR:3,End X:401, Y:260, Z:-10112 errType: 0. G_N:step:2, A:99090,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:44:57]收→ G_N:step:2, A:104180,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 V:26079,C:295,c_c:30,Mode:3 L_Pump:20,L_PS:0,L_PTS:0,L_PP:0 R_Pump:8,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:96,L_WS:0,L_WTS:-22,L_WPP:112 R_Wheel:16,R_WS:64,R_WTS:66,R_WPP:196 ir_ML:3063,IR_MR:2886,IR_SL:16,IR_SR:21,End X:412, Y:284, Z:-10084 errType: 0. [2025-06-24 01:44:58]收→branch:V0.3.6 [2025-06-24 01:44:58]收→ G_N:step:2, A:108780,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:44:59]收→V:26079,C:326,c_c:30,Mode:3 L_Pump:7,L_PS:0,L_PTS:0,L_PP:0 R_Pump:2,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:91,L_WS:-37,L_WTS:-22,L_WPP:107 R_Wheel:72,R_WS:69,R_WTS:66,R_WPP:190 ir_ML:3063,IR_MR:3255,IR_SL:2,IR_SR:25,End X:384, Y:266, Z:-10026 errType: 0. [2025-06-24 01:44:59]收→ G_N:step:2, A:114500,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:45:00]收→V:26079,C:326,c_c:30,Mode:3 L_Pump:4,L_PS:0,L_PTS:0,L_PP:0 R_Pump:2,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:86,L_WS:-34,L_WTS:-22,L_WPP:101 R_Wheel:82,R_WS:66,R_WTS:66,R_WPP:189 ir_ML:2691,IR_MR:3209,IR_SL:2,IR_SR:15,End X:322, Y:280, Z:-10116 errType: 0. [2025-06-24 01:45:00]收→branch:V0.3.6 G_N:step:2, A:120770,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:45:01]收→V:26079,C:341,c_c:30,Mode:3 L_Pump:3,L_PS:0,L_PTS:0,L_PP:0 R_Pump:1,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:90,L_WS:-28,L_WTS:-22,L_WPP:102 R_Wheel:89,R_WS:60,R_WTS:66,R_WPP:198 ir_ML:1502,IR_MR:3460,IR_SL:16,IR_SR:15,End X:270, Y:280, Z:-10083 errType: 0. [2025-06-24 01:45:01]收→ G_N:step:2, A:129629,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:45:02]收→V:26079,C:322,c_c:30,Mode:3 L_Pump:2,L_PS:0,L_PTS:0,L_PP:0 R_Pump:2,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:102,L_WS:-22,L_WTS:-22,L_WPP:96 R_Wheel:85,R_WS:62,R_WTS:66,R_WPP:194 ir_ML:18,IR_MR:3303,IR_SL:16,IR_SR:25,End X:186, Y:316, Z:-10080 errType: 0. [2025-06-24 01:45:02]收→ G_N:step:2, A:139190,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 branch:V0.3.6 [2025-06-24 01:45:03]收→Drv_MotorRunToAngleGotoLine step 0.. [2025-06-24 01:45:03]收→Drv_MotorRunToAngleGotoLine step 1.. V:26088,C:218,c_c:30,Mode:3 L_Pump: [2025-06-24 01:45:03]收→3,L_PS:0,L_PTS:0,L_PP:0 R_Pump:1,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:52,L_WS:0,L_WTS:44,L_WPP:39 R_Wheel:16,R_WS:0,R_WTS:110,R_WPP:99 ir_ML:5,IR_MR:2963,IR_SL:19,IR_SR:1801,End X:19, Y:428, Z:-10126 errType: 0. [2025-06-24 01:45:03]收→ G_N:step:2, A:147310,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:45:04]收→get wall flag ONE :3 [2025-06-24 01:45:04]收→Drv_MotorRunToAngleGotoLine step:2....53,107. Drv_MotorRunToAngleGotoLine step 3.. [2025-06-24 01:45:04]收→V:26079,C:356,c_c:30,Mode:3 L_Pump:3,L_PS:0,L_PTS:0,L_PP:0 R_Pump:2,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:115,L_WS:-46,L_WTS:-22,L_WPP:106 R_Wheel:75,R_WS:110,R_WTS:66,R_WPP:224 ir_ML:4,IR_MR:2200,IR_SL:19,IR_SR:3184,End X:149, Y:344, Z:-10059 errType: 0. [2025-06-24 01:45:04]收→ G_N:step:2, A:153000,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:45:05]收→branch:V0.3.6 [2025-06-24 01:45:05]收→V:26079,C:299,c_c:30,Mode:3 L_Pump:3,L_PS:0,L_PTS:0,L_PP:0 R_Pump:1,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:110,L_WS:0,L_WTS:-22,L_WPP:119 R_Wheel:16,R_WS:62,R_WTS:66,R_WPP:198 ir_ML:50,IR_MR:146,IR_SL:7,IR_SR:3430,End X:70, Y:302, Z:-10117 errType: 0. [2025-06-24 01:45:05]收→ G_N:step:2, A:161470,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:45:06]收→V:26079,C:330,c_c:30,Mode:3 L_Pump:3,L_PS:0,L_PTS:0,L_PP:0 R_Pump:2,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:106,L_WS:0,L_WTS:0,L_WPP:0 R_Wheel:16,R_WS:63,R_WTS:0,R_WPP:0 ir_ML:3,IR_MR:2,IR_SL:7,IR_SR:3633,End X:14, Y:334, Z:-10069 errType: 0. G_N:step:2, A:171170,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:45:07]收→branch:V0.3.6 path plan goto line turn angel 90 .....270,17292,0 [2025-06-24 01:45:07]收→ G_N:step:3, A:173180,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 V:26079,C:364,c_c:30,Mode:3 L_Pump:1,L_PS:0,L_PTS:0,L_PP:0 R_Pump:1,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:106,L_WS:74,L_WTS:66,L_WPP:206 R_Wheel:95,R_WS:74,R_WTS:66,R_WPP:199 ir_ML:5,IR_MR:33,IR_SL:14,IR_SR:3679,End X:50, Y:329, Z:-10132 errType: 0. [2025-06-24 01:45:09]收→ G_N:step:6, A:173440,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:45:09]收→V:26079,C:337,c_c:30,Mode:3 L_Pump:2,L_PS:0,L_PTS:160,L_PP:82 R_Pump:2,R_PS:0,R_PTS:160,R_PP:82 L_Wheel:85,L_WS:-61,L_WTS:-187,L_WPP:445 R_Wheel:87,R_WS:60,R_WTS:44,R_WPP:148 ir_ML:2,IR_MR:3,IR_SL:20,IR_SR:3678,End X:-12, Y:374, Z:-10067 errType: 0. [2025-06-24 01:45:09]收→branch:V0.3.6 [2025-06-24 01:45:09]收→c_C:16,c_T:7175,b_T:2766,w_T:1605,Over:0 err[0] = 2 err[1] = 1 err[2] = 2 err[3] = 3 err[4] = 4 err[5] = 3 err[6] = 4 err[7] = 3 err[8] = 0 err[9] = 0 [2025-06-24 01:45:10]收→ G_N:step:6, A:176300,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:45:10]收→V:25990,C:1043,c_c:30,Mode:3 L_Pump:376,L_PS:0,L_PTS:160,L_PP:258 R_Pump:142,R_PS:67,R_PTS:160,R_PP:145 L_Wheel:77,L_WS:-177,L_WTS:-187,L_WPP:488 R_Wheel:250,R_WS:42,R_WTS:44,R_WPP:142 ir_ML:3,IR_MR:16,IR_SL:21,IR_SR:3715,End X:-102, Y:367, Z:-10105 errType: 0. [2025-06-24 01:45:11]收→ G_N:step:6, A:184340,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:45:11]收→V:26008,C:940,c_c:30,Mode:3 L_Pump:310,L_PS:108,L_PTS:160,L_PP:274 R_Pump:117,R_PS:75,R_PTS:160,R_PP:235 L_Wheel:97,L_WS:-189,L_WTS:-187,L_WPP:483 R_Wheel:284,R_WS:41,R_WTS:44,R_WPP:151 ir_ML:16,IR_MR:17,IR_SL:20,IR_SR:3575,End X:-137, Y:328, Z:-10060 errType: 0. [2025-06-24 01:45:11]收→branch:V0.3.6 [2025-06-24 01:45:12]收→ G_N:step:6, A:195090,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:45:12]收→V:25981,C:1101,c_c:30,Mode:3 L_Pump:330,L_PS:117,L_PTS:160,L_PP:311 R_Pump:197,R_PS:108,R_PTS:160,R_PP:289 L_Wheel:102,L_WS:-186,L_WTS:-187,L_WPP:468 R_Wheel:318,R_WS:48,R_WTS:33,R_WPP:153 ir_ML:1,IR_MR:33,IR_SL:6,IR_SR:3137,End X:-117, Y:314, Z:-10025 errType: 0. [2025-06-24 01:45:13]收→ G_N:step:6, A:209260,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:45:13]收→branch:V0.3.6 V:25964,C:1185,c_c:30,Mode:3 L_Pump:381,L_PS:142,L_PTS:160,L_PP:327 R_Pump:281,R_PS:134,R_PTS:160,R_PP:323 L_Wheel:85,L_WS:-194,L_WTS:-165,L_WPP:455 R_Wheel:288,R_WS:30,R_WTS:28,R_WPP:122 ir_ML:3,IR_MR:97,IR_SL:16,IR_SR:531,End X:-423, Y:186, Z:-10144 errType: 0. [2025-06-24 01:45:14]收→ G_N:step:6, A:228640,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:45:14]收→V:25946,C:1354,c_c:30,Mode:3 L_Pump:433,L_PS:142,L_PTS:160,L_PP:339 R_Pump:363,R_PS:142,R_PTS:160,R_PP:339 L_Wheel:82,L_WS:-162,L_WTS:-165,L_WPP:442 R_Wheel:258,R_WS:26,R_WTS:28,R_WPP:109 ir_ML:3,IR_MR:114,IR_SL:17,IR_SR:4,End X:-593, Y:294, Z:-10044 errType: 0. [2025-06-24 01:45:15]收→ G_N:step:6, A:247090,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:45:15]收→branch:V0.3.6 [2025-06-24 01:45:15]收→V:25964,C:1251,c_c:30,Mode:3 L_Pump:465,L_PS:150,L_PTS:160,L_PP:346 R_Pump:401,R_PS:150,R_PTS:160,R_PP:346 L_Wheel:14,L_WS:-93,L_WTS:-88,L_WPP:269 R_Wheel:145,R_WS:6,R_WTS:13,R_WPP:118 ir_ML:3,IR_MR:162,IR_SL:16,IR_SR:4,End X:-576, Y:114, Z:-10123 errType: 0. [2025-06-24 01:45:16]收→ G_N:step:6, A:254970,dir:1,willA:270000,newWall:0,wall_down:93409,front_len:1 [2025-06-24 01:45:17]收→V:25946,C:1377,c_c:30,Mode:3 L_Pump:518,L_PS:159,L_PTS:160illA:270000,newWall:0,wall_down:93409,front_len:1 R_Pump:436,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:88,L_WS:-85,L_WTS:-88,L_WPP:261 R_Wheel:150,R_WS:21,R_WTS:13,R_WPP:92 ir_ML:2,IR_MR:17,IR_SL:2,IR_SR:15,End X:-550, Y:-68, Z:-10051 errType: 0. errType: 0. [2025-06-24 01:45:17]收→T:step:0, startAng:260910, dir:1, stop:1, adjust:90000, Bais:90000,0 Line clean gPath_plan.cleanLineInfo[4] = 270 [2025-06-24 01:45:17]收→branch:V0.3.6 [2025-06-24 01:45:18]收→V:25946,C:1281,c_c:30,Mode:3 L_Pump:529,L_PS:150,L_PTS:160,L_PP:350 R_Pump:452,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:132,L_WS:0,L_WTS:55,L_WPP:20 R_Wheel:22,R_WS:47,R_WTS:55,R_WPP:192 ir_ML:1,IR_MR:17,IR_SL:17,IR_SR:16,End X:-466, Y:-53, Z:-10111 errType: 0. [2025-06-24 01:45:18]收→T:step:1, startAng:262560, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:19]收→V:25946,C:1312,c_c:30,Mode:3 L_Pump:530,L_PS:159,L_PTS:160,L_PP:345 R_Pump:449,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:141,L_WS:0,L_WTS:88,L_WPP:20 R_Wheel:22,R_WS:76,R_WTS:88,R_WPP:263 ir_ML:17,IR_MR:23,IR_SL:16,IR_SR:16,End X:-431, Y:-136, Z:-10051 errType: 0. [2025-06-24 01:45:19]收→T:step:1, startAng:268800, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:20]收→branch:V0.3.6 [2025-06-24 01:45:20]收→V:25937,C:1389,c_c:30,Mode:3 L_Pump:535,L_PS:159,L_PTS:160,L_PP:345 R_Pump:447,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:128,L_WS:87,L_WTS:88,L_WPP:276 R_Wheel:141,R_WS:91,R_WTS:88,R_WPP:229 ir_ML:3,IR_MR:98,IR_SL:17,IR_SR:10,End X:-292, Y:-135, Z:-10076 errType: 0. T:step:1, startAng:272210, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:21]收→T:step:1, startAng:272070, dir:2, stop:0, adjust:270000, Bais:90000,0 V:25937,C:1458,c_c:30,Mode:3 L_Pump:536,L_PS:159,L_PTS:160,L_PP:345 R_Pump:449,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:116,L_WS:132,L_WTS:121,L_WPP:351 R_Wheel:166,R_WS:120,R_WTS:121,R_WPP:284 ir_ML:3,IR_MR:65,IR_SL:2,IR_SR:3,End X:-140, Y:-185, Z:-10130 errType: 0. [2025-06-24 01:45:22]收→branch:V0.3.6 [2025-06-24 01:45:22]收→T:step:1, startAng:271310, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:22]收→V:25937,C:1369,c_c:30,Mode:3 L_Pump:539,L_PS:150,L_PTS:160,L_PP:350 R_Pump:459,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:110,L_WS:128,L_WTS:121,L_WPP:322 R_Wheel:128,R_WS:114,R_WTS:121,R_WPP:292 ir_ML:16,IR_MR:48,IR_SL:17,IR_SR:7,End X:4, Y:-282, Z:-10227 errType: 0. [2025-06-24 01:45:23]收→T:step:1, startAng:271020, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:23]收→V:25937,C:1389,c_c:30,Mode:3 L_Pump:532,L_PS:159,L_PTS:160,L_PP:345 R_Pump:452,R_PS:150,R_PTS:160,R_PP:354 L_Wheel:118,L_WS:126,L_WTS:121,L_WPP:315 R_Wheel:137,R_WS:113,R_WTS:121,R_WPP:301 ir_ML:3,IR_MR:82,IR_SL:17,IR_SR:16,End X:82, Y:-255, Z:-10021 errType: 0. [2025-06-24 01:45:24]收→branch:V0.3.6 [2025-06-24 01:45:24]收→T:step:1, startAng:271050, dir:2, stop:0, adjust:270000, Bais:90000,0 这是一份TXT文件log,帮我用C++提取其中的时间,V,C,L_Pump,R_Pump
06-30
Please implement a simple linear regression model using Python, using gradient descent. The function is defined as def linear_regression_gradient_descent(X, y, learning_rate, iterations), where X is the feature data (two-dimensional array or list), y is the target data (one-dimensional array or list), learning_rate is the learning rate, and iterations is the number of iterations for gradient descent. The return value of the function is a tuple, containing the coefficients and intercept of the model这个是我的问题,以下之我的解决步骤,section_number: 1 section_description: Identify the task of implementing a linear regression model with gradient descent section_content: step1: [思考开始] Alright, I need to implement a simple linear regression model using Python, specifically using gradient descent. The function is defined as def linear_regression_gradient_descent(X, y, learning_rate, iterations), where X is the feature data, which is a two-dimensional array or list, y is the target data, a one-dimensional array or list, learning_rate is the learning rate for gradient descent, and iterations is the number of iterations for gradient descent. The function should return a tuple containing the coefficients and intercept of the model. *** *** section_number: 2 section_description: Understanding of linear regression and gradient descent section_content: step2: First, I need to understand what linear regression is. It's a statistical method that allows us to summarize and study relationships between continuous variables. In this case, we have multiple features since X is a two-dimensional array, which means it's multiple linear regression. step3: In multiple linear regression, the model can be represented as: step4: y = b1*x1 + b2*x2 + ... + bn*xn step5: Where: - y is the dependent variable (target) - x1, x2, ..., xn are the independent variables (features) - b0 is the intercept - b1, b2, ..., bn are the coefficients for each feature step6: I need to find the values of b0, b1, ..., bn that minimize the cost function, which is typically the mean squared error between the predicted values and the actual values. step7: Gradient descent is an optimization algorithm that can be used to find the values of these coefficients and intercept by iteratively updating them in the direction of the steepest descent of the cost function. *** *** section_number: 3 section_description: Plan to implement gradient descent for finding coefficients section_content: step8: So, my task is to implement gradient descent to find the best values for b0 and b1, b2, etc. step9: First, I need to initialize the coefficients and intercept. Usually, we initialize them to zero or some random values. For simplicity, I'll initialize them to zero. step10: Next, I need to define the cost function, which is the mean squared error. step11: Then, I need to compute the gradients of the cost function with respect to each coefficient and the intercept. These gradients will tell me how to adjust the coefficients and intercept to reduce the cost. step12: After computing the gradients, I'll update the coefficients and intercept by subtracting the gradients multiplied by the learning rate. step13: I need to repeat this process for a specified number of iterations. step14: Finally, I'll return the coefficients and intercept as a tuple. *** *** section_number: 4 section_description: Handling of data dimensions and intercept separately section_content: step15: Let me think about how to handle the data. X is a two-dimensional array or list, so it should have multiple features. y is a one-dimensional array or list. step16: I need to make sure that X and y have compatible dimensions. step17: Also, I need to handle the intercept. In multiple linear regression, the intercept can be considered as a coefficient for a feature that is always 1. step18: To make the implementation easier, I can add a column of ones to X for the intercept. step19: Wait, but the problem says to return the intercept separately, not as part of the coefficients. So, I need to keep track of the intercept separately. step20: Alternatively, I can include the intercept in the coefficients by adding a column of ones to X, and then the first coefficient will be the intercept. step21: But the problem asks for a tuple containing the coefficients and intercept, so perhaps it's better to keep them separate. *** *** section_number: 5 section_description: Outline of the implementation steps section_content: step22: Let me think about how to implement this. step23: Initialize the coefficients to a list of zeros, with length equal to the number of features. step24: Initialize the intercept to zero. step25: For each iteration: step26: Compute the predicted values: y_pred = intercept + X.dot(coefficients) step27: Compute the gradients for the intercept and coefficients. step28: The gradient for the intercept is the mean of (y_pred - y) step29: The gradient for each coefficient is the mean of (y_pred - y) * X[:, feature_index] step30: Update the intercept and coefficients: step31: intercept = intercept - learning_rate * gradient_intercept step32: coefficients = coefficients - learning_rate * gradient_coefficients step33: After all iterations, return the coefficients and intercept as a tuple. *** *** section_number: 6 section_description: Considerations for gradient calculations and use of numpy section_content: step34: Wait, I need to make sure about the gradient calculations. step35: In linear regression, the cost function is: step36: J = (1/(2*m)) * sum((y_pred - y)^2) step37: Where m is the number of training examples. step38: The gradients are the partial derivatives of J with respect to each parameter. step39: For the intercept (b0): step40: dJ/db0 = (1/m) * sum(y - y_pred) step41: For each coefficient (b1, b2, ...): step42: dJ/dbj = (1/m) * sum((y_pred - y) * xj) step43: Where xj is the j-th feature. step44: So, I need to compute these gradients and update the parameters accordingly. step45: I need to make sure that the dimensions match when performing these operations. step46: Since X is a two-dimensional array, and y is one-dimensional, I need to ensure that the dot product and multiplications are done correctly. step47: In Python, I can use numpy for numerical operations, but the problem doesn't specify if I can use numpy or if I should implement it using pure Python lists. step48: Looking back at the problem statement, it says "two-dimensional array or list" and "one-dimensional array or list", so I think I should implement it using pure Python lists without relying on numpy. step49: But implementing matrix operations with pure Python lists can be cumbersome and inefficient, especially for large datasets. step50: However, since the problem doesn't specify, I'll assume that I can use numpy for numerical operations, as it's common practice in data science. *** *** section_number: 7 section_description: Code outline and considerations for potential edge cases section_content: step51: So, I'll import numpy at the beginning. step52: Now, I'll outline the steps in code: step53: 1. Import numpy. step54: 2. Define the function linear_regression_gradient_descent(X, y, learning_rate, iterations): step55: a. Convert X and y to numpy arrays for easier numerical operations. step56: b. Initialize coefficients to a list of zeros with length equal to the number of features. step57: c. Initialize intercept to zero. step58: d. Perform gradient descent for the given number of iterations: step59: i. Compute y_pred = intercept + X.dot(coefficients) step60: ii. Compute the error: y_pred - y step61: iii. Compute the gradient for the intercept: (1/m) * np.sum(error) step62: iv. Compute the gradient for coefficients: (1/m) * np.dot(X.T, error) step63: v. Update intercept and coefficients: step64: intercept -= learning_rate * gradient_intercept step65: coefficients -= learning_rate * gradient_coefficients step66: e. After all iterations, return the coefficients and intercept as a tuple. step67: Wait, in step d.iv, np.dot(X.T, error) will give the sum of the product of each feature with the error, which is what we need for the gradients of the coefficients. step68: But I need to make sure that the dimensions are correct. step69: Assuming X is of shape (m, n), where m is the number of samples and n is the number of features. step70: y is of shape (m,). step71: coefficients is of shape (n,). step72: intercept is a scalar. step73: Then, y_pred = intercept + X.dot(coefficients) should be of shape (m,). step74: error = y_pred - y, shape (m,). step75: gradient_intercept = (1/m) * np.sum(error) step76: gradient_coefficients = (1/m) * np.dot(X.T, error), shape (n,) step77: Then, updating coefficients and intercept: step78: intercept = intercept - learning_rate * gradient_intercept step79: coefficients = coefficients - learning_rate * gradient_coefficients step80: This seems correct. step81: Now, I need to consider if there is any need to normalize the features or handle scaling, but since the problem doesn't mention it, I'll assume that the features are already scaled appropriately. step82: Also, I need to make sure that the function returns the coefficients and intercept in a tuple, with coefficients being a list or array, and intercept being a scalar. step83: I should also think about edge cases, such as: step84: - If X has only one feature. step85: - If X has multiple features. step86: - If the number of samples in X and y don't match. step87: - If learning_rate is zero or negative. step88: - If iterations is zero or negative. step89: I need to handle these cases appropriately, perhaps by adding assertions or checks at the beginning of the function. step90: But since the problem doesn't specify handling of invalid inputs, I'll assume that the inputs are valid. step91: Also, I need to make sure that the function is efficient and doesn't have unnecessary computations. step92: Now, I'll proceed to write the code accordingly. [思考结束] *** *** section_number: 8 section_description: Explanation of approach for solving the problem with initialization and gradient descent steps section_content: step93: To solve this problem, we need to implement a simple linear regression model using gradient descent in Python. The task is to find the coefficients and intercept of the regression line that minimizes the mean squared error between the predicted and actual target values. step94: ### Approach step95: 1. **Initialization**: - Convert the input feature data `X` and target data `y` into numpy arrays for efficient numerical operations. - Initialize the coefficients to a list of zeros, with a length equal to the number of features. - Initialize the intercept to zero. step96: 2. **Gradient Descent**: - For a specified number of iterations, perform the following steps: - Compute the predicted target values using the current coefficients and intercept. - Calculate the error between the predicted and actual target values. - Compute the gradients for the intercept and coefficients. - Update the intercept and coefficients using the gradients and the learning rate. step97: 3. **Return the Results**: - After completing the iterations, return the coefficients and intercept as a tuple. *** *** section_number: 9 section_description: Implementation of the solution using numpy for gradient descent section_content: step98: ### Solution Code step99: ```python import numpy as np step100: def linear_regression_gradient_descent(X, y, learning_rate, iterations): # Convert X and y to numpy arrays X = np.array(X) y = np.array(y) # Number of samples and features m, n = X.shape # Initialize coefficients and intercept coefficients = np.zeros(n) intercept = 0.0 # Gradient descent for _ in range(iterations): # Predicted values y_pred = intercept + np.dot(X, coefficients) # Errors error = y_pred - y # Gradients gradient_intercept = (1/m) * np.sum(error) gradient_coefficients = (1/m) * np.dot(error, X) # Update intercept and coefficients intercept -= learning_rate * gradient_intercept coefficients -= learning_rate * gradient_coefficients return (coefficients.tolist(), intercept) ``` *** *** section_number: 10 section_description: Detailed explanation of the implementation and results section_content: step101: ### Explanation step102: - **Initialization**: - We convert `X` and `y` to numpy arrays to leverage numpy's efficient array operations. - The coefficients are initialized to zeros, and the intercept is initialized to zero. step103: - **Gradient Descent**: - For each iteration, we calculate the predicted values (`y_pred`) using the current coefficients and intercept. - The error is the difference between the predicted and actual target values. - The gradients for the intercept and coefficients are computed as the mean of the error and the dot product of the feature matrix transpose and the error, respectively. - The intercept and coefficients are updated by subtracting the learning rate multiplied by their respective gradients. step104: - **Return the Results**: - After completing the specified number of iterations, the function returns the coefficients and intercept as a tuple, converting the coefficients back to a list for compatibility. step105: This approach efficiently finds the optimal coefficients and intercept for the linear regression model using gradient descent.请你根据以下的规则进行标注section_number:准确填写当前标注的 section 的序号。 contain_new_solution:判断当前段落是否开启新的思路尝试,若有则标注 “1”,否则标注 “0” 。若为 “1”,请进一步明确新的思路尝试开始的步骤(填入 new_solution_step )。 idea_correct:判断当前段落内思路是否正确或有用。如果该段落内所采用的思路或方法能在解题中具有实际意义,则标记为 “1”;否则,标记为 “0”。 contain_error:判断当前段落是否存在错误。若存在错误,该字段标记为 “1”,并需继续填写后续错误相关字段;若不存在错误,则标记为 “0”,可跳过错误相关字段,直接进行下一项标注。 error_step:若当前段落存在错误,则需详细记录具体是在哪一步出错。 explanation:用一句话简单描述错误原因。 correction:给出该步骤的正确推理或计算过程。 contain_reflection:判断该段落是否包含正向的反思。如果段落中有对错误或思路的积极反思,则标记为 “1”,否则标记为 “0”。若标记为 “1”,需记录反思从哪个步骤开始(填入 reflection_start_step )请你将上述的10个section,进行标注
05-12
[2025-06-24 01:45:23]收→V:25937,C:1389,c_c:30,Mode:3 L_Pump:532,L_PS:159,L_PTS:160,L_PP:345 R_Pump:452,R_PS:150,R_PTS:160,R_PP:354 L_Wheel:118,L_WS:126,L_WTS:121,L_WPP:315 R_Wheel:137,R_WS:113,R_WTS:121,R_WPP:301 ir_ML:3,IR_MR:82,IR_SL:17,IR_SR:16,End X:82, Y:-255, Z:-10021 errType: 0. [2025-06-24 01:45:24]收→branch:V0.3.6 [2025-06-24 01:45:24]收→T:step:1, startAng:271050, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:24]收→V:25937,C:1462,c_c:30,Mode:3 L_Pump:529,L_PS:150,L_PTS:160,L_PP:350 R_Pump:448,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:131,L_WS:124,L_WTS:121,L_WPP:326 R_Wheel:125,R_WS:118,R_WTS:121,R_WPP:296 ir_ML:3,IR_MR:4,IR_SL:16,IR_SR:16,End X:105, Y:-290, Z:-10017 errType: 0. [2025-06-24 01:45:25]收→T:step:1, startAng:271130, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:26]收→V:25937,C:1396,c_c:30,Mode:3 L_Pump:526,L_PS:159,L_PTS:160,L_PP:345 R_Pump:450,R_PS:150,R_PTS:160,R_PP:354 L_Wheel:107,L_WS:124,L_WTS:121,L_WPP:322 R_Wheel:138,R_WS:115,R_WTS:121,R_WPP:300 ir_ML:17,IR_MR:114,IR_SL:4,IR_SR:16,End X:-40, Y:-292, Z:-10176 errType: 0. [2025-06-24 01:45:26]收→branch:V0.3.6 T:step:1, startAng:270790, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:27]收→V:25937,C:1454,c_c:30,Mode:3 L_Pump:533,L_PS:159,L_PTS:160,L_PP:345 R_Pump:452,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:115,L_WS:121,L_WTS:121,L_WPP:312 R_Wheel:133,R_WS:122,R_WTS:121,R_WPP:307 ir_ML:16,IR_MR:49,IR_SL:2,IR_SR:16,End X:2, Y:-236, Z:-10112 errType: 0. [2025-06-24 01:45:27]收→T:step:1, startAng:270710, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:28]收→V:25937,C:1454,c_c:30,Mode:3 L_Pump:543,L_PS:159,L_PTS:160,L_PP:345 R_Pump:450,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:129,L_WS:122,L_WTS:121,L_WPP:301 R_Wheel:111,R_WS:120,R_WTS:121,R_WPP:311 ir_ML:2,IR_MR:33,IR_SL:17,IR_SR:4,End X:-15, Y:-292, Z:-10220 errType: 0. [2025-06-24 01:45:28]收→T:step:1, startAng:270920, dir:2, stop:0, adjust:270000, Bais:90000,0 branch:V0.3.6 [2025-06-24 01:45:29]收→V:25937,C:1416,c_c:30,Mode:3 L_Pump:542,L_PS:159,L_PTS:160,L_PP:345 R_Pump:450,R_PS:150,R_PTS:160,R_PP:354 L_Wheel:116,L_WS:125,L_WTS:121,L_WPP:320 R_Wheel:114,R_WS:118,R_WTS:121,R_WPP:293 ir_ML:17,IR_MR:65,IR_SL:16,IR_SR:3,End X:-53, Y:-250, Z:-10179 errType: 0. [2025-06-24 01:45:29]收→T:step:1, startAng:271140, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:30]收→:536,L_PS:159,L_PTS:160,L_PP:345 R_Pump:447,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:119,L_WS:127,L_WTS:121,L_WPP:300 R_Wheel:112,R_WS:121,R_WTS:121,R_WPP:309 ir_ML:3,IR_MR:82,IR_SL:17,top:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:31]收→:527,L_PS:159,L_PTS:160,L_PP:345 :0, adjust:2160,R_PP:349 L_Wheel:118,L_WS:123,L_WTS:121,L 0. [2025-06-24 01:45:32]收→T:step:1, startAng:270960, dir:2, stop:0, adjust:270000, Bais:90000,0 V:25937,C:1354,c_c:30,Mode:3 L_Pump [2025-06-24 01:45:32]收→:539,L_PS:150,L_PTS:160,L_PP:350 R_Pump:464,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:115,L_WS:132,L_WTS:121,L_WPP:318 R_Wheel:117,R_WS:114,R_WTS:121,R_WPP:298 ir_ML:1,IR_MR:129,IR_SL:17,IR_SR:15,End X:90, Y:-261, Z:-10055 errType: 0. [2025-06-24 01:45:33]收→branch:V0.3.6 [2025-06-24 01:45:33]收→T:step:1, startAng:271070, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:33]收→V:25937,C:1462,c_c:30,Mode:3 L_Pump:541,L_PS:159,L_PTS:160,L_PP:345 R_Pump:449,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:129,L_WS:118,L_WTS:121,L_WPP:319 R_Wheel:118,R_WS:119,R_WTS:121,R_WPP:302 ir_ML:16,IR_MR:17,IR_SL:17,IR_SR:13,End X:68, Y:-188, Z:-10107 errType: 0. [2025-06-24 01:45:34]收→T:step:1, startAng:270700, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:35]收→V:25937,C:1385,c_c:30,Mode:3 L_Pump:536,L_PS:159,L_PTS:160,L_PP:345 R_Pump:442,R_PS:150,R_PTS:160,R_PP:354 L_Wheel:108,L_WS:122,L_WTS:121,L_WPP:312 R_Wheel:136,R_WS:119,R_WTS:121,R_WPP:304 ir_ML:3,IR_MR:16,IR_SL:11,IR_SR:3,End X:44, Y:-215, Z:-10062 errType: 0. [2025-06-24 01:45:35]收→branch:V0.3.6 [2025-06-24 01:45:35]收→T:step:1, startAng:270580, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:36]收→V:25937,C:1427,c_c:30,Mode:3 L_Pump:517,L_PS:159,L_PTS:160,L_PP:345 R_Pump:441,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:113,L_WS:122,L_WTS:121,L_WPP:309 R_Wheel:118,R_WS:123,R_WTS:121,R_WPP:306 ir_ML:3,IR_MR:82,IR_SL:2,IR_SR:3,End X:27, Y:-216, Z:-9954 errType: 0. [2025-06-24 01:45:36]收→T:step:1, startAng:270810, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:37]收→branch:V0.3.6 V:25928,C:1412,c_c:30,Mode:3 L_Pump:522,L_PS:159,L_PTS:160,L_PP:345 R_Pump:440,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:113,L_WS:122,L_WTS:121,L_WPP:304 R_Wheel:112,R_WS:122,R_WTS:121,R_WPP:305 ir_ML:3,IR_MR:17,IR_SL:16,IR_SR:16,End X:-66, Y:-227, Z:-10117 errType: 0. [2025-06-24 01:45:37]收→T:step:1, startAng:270830, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:38]收→V:25937,C:1450,c_c:30,Mode:3 L_Pump:532,L_PS:159,L_PTS:160,L_PP:345 R_Pump:439,R_PS:150,R_PTS:160,R_PP:354 L_Wheel:131,L_WS:121,L_WTS:121,L_WPP:307 R_Wheel:122,R_WS:120,R_WTS:121,R_WPP:311 ir_ML:32,IR_MR:3,IR_SL:17,IR_SR:15,End X:-25, Y:-233, Z:-10068 errType: 0. [2025-06-24 01:45:38]收→T:step:1, startAng:270920, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:39]收→branch:V0.3.6 [2025-06-24 01:45:39]收→V:25928,C:1481,c_c:30,Mode:3 L_Pump:539,L_PS:159,L_PTS:160,L_PP:345 R_Pump:439,R_PS:150,R_PTS:160,R_PP:354 L_Wheel:126,L_WS:126,L_WTS:121,L_WPP:320 R_Wheel:135,R_WS:119,R_WTS:121,R_WPP:296 ir_ML:21,IR_MR:4,IR_SL:17,IR_SR:16,End X:61, Y:-202, Z:-10085 errType: 0. [2025-06-24 01:45:39]收→T:step:1, startAng:271120, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:40]收→V:25928,C:1504,c_c:30,Mode:3 L_Pump:531,L_PS:159,L_PTS:160,L_PP:345 R_Pump:457,R_PS:150,R_PTS:160,R_PP:354 L_Wheel:119,L_WS:122,L_WTS:121,L_WPP:326 R_Wheel:134,R_WS:117,R_WTS:121,R_WPP:293 ir_ML:3,IR_MR:179,IR_SL:2,IR_SR:40,End X:60, Y:-259, Z:-10144 errType: 0. [2025-06-24 01:45:40]收→T:step:1, startAng:271170, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:41]收→branch:V0.3.6 [2025-06-24 01:45:41]收→V:25928,C:1404,c_c:30,Mode:3 L_Pump:534,L_PS:150,L_PTS:160,L_PP:350 R_Pump:450,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:114,L_WS:117,L_WTS:121,L_WPP:310 R_Wheel:126,R_WS:120,R_WTS:121,R_WPP:307 ir_ML:17,IR_MR:32,IR_SL:15,IR_SR:4,End X:9, Y:-234, Z:-10140 errType: 0. T:step:1, startAng:270160, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:42]收→T:step:1, startAng:270140, dir:2, stop:0, adjust:270000, Bais:90000,0 V:25928,C:1400,c_c:30,Mode:3 L_Pump:539,L_PS:159,L_PTS:160,L_PP:345 R_Pump:446,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:118,L_WS:121,L_WTS:121,L_WPP:304 R_Wheel:113,R_WS:119,R_WTS:121,R_WPP:312 ir_ML:2,IR_MR:98,IR_SL:16,IR_SR:3,End X:4, Y:-247, Z:-10024 errType: 0. [2025-06-24 01:45:43]收→top:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:44]收→V:25928,C:1458,c_c:30,Mode:3 L_Pump_PS:159,R_PTS:160,R_PP:349 L_Wheel:121,L_WS:122,L_WTS:121,L_WPP:309 R_Wheel:125,R_WS:122,R_WTS:121,R_WPP:313 ir_ML:2,IR_MR:98,IR_SL:16,IR_SR:15,End X:-4, Y:-294, Z:-10185 errType: 0. [2025-06-24 01:45:44]收→T:step:1, startAng:270550, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:45]收→V:25919,C:1446,c_c:30,Mode:3 L_Pump:531,L_PS:159,L_PTS:160,L_PP:345 R_Pump:439,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:131,L_WS:121,L_WTS:121,L_WPP:307 R_Wheel:117,R_WS:119,R_WTS:121,R_WPP:311 ir_ML:3,IR_MR:145,IR_SL:5,IR_SR:16,End X:27, Y:-329, Z:-10137 errType: 0. [2025-06-24 01:45:45]收→branch:V0.3.6 T:step:1, startAng:270600, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:46]收→V:25928,C:1377,c_c:30,Mode:3 L_Pump:537,L_PS:159,L_PTS:160,L_PP:345 R_Pump:439,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:123,L_WS:124,L_WTS:121,L_WPP:306 R_Wheel:122,R_WS:122,R_WTS:121,R_WPP:311 ir_ML:17,IR_MR:49,IR_SL:2,IR_SR:15,End X:45, Y:-251, Z:-10036 errType: 0. [2025-06-24 01:45:46]收→T:step:1, startAng:270610, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:47]收→V:25919,C:1404,c_c:30,Mode:3 L_Pump:535,L_PS:159,L_PTS:160,L_PP:345 R_Pump:445,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:125,L_WS:121,L_WTS:121,L_WPP:305 R_Wheel:119,R_WS:122,R_WTS:121,R_WPP:310 ir_ML:2,IR_MR:162,IR_SL:16,IR_SR:15,End X:31, Y:-248, Z:-10099 errType: 0. [2025-06-24 01:45:47]收→T:step:1, startAng:271060, dir:2, stop:0, adjust:270000, Bais:90000,0 branch:V0.3.6 [2025-06-24 01:45:48]收→V:25928,C:1412,c_c:30,Mode:3 L_Pump:537,L_PS:150,L_PTS:160,L_PP:350 R_Pump:444,R_PS:150,R_PTS:160,R_PP:354 L_Wheel:114,L_WS:121,L_WTS:121,L_WPP:308 R_Wheel:122,R_WS:117,R_WTS:121,R_WPP:305 ir_ML:2,IR_MR:3,IR_SL:17,IR_SR:13,End X:35, Y:-215, Z:-10113 errType: 0. [2025-06-24 01:45:48]收→T:step:1, startAng:270980, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:49]收→V:25919,C:1358,c_c:30,Mode:3 L_Pump:539,L_PS:159,L_PTS:160,L_PP:345 R_Pump:442,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:122,L_WS:120,L_WTS:121,L_WPP:306 R_Wheel:125,R_WS:121,R_WTS:121,R_WPP:306 ir_ML:3,IR_MR:130,IR_SL:17,IR_SR:18,End X:70, Y:-194, Z:-10013 errType: 0. [2025-06-24 01:45:49]收→T:step:1, startAng:270510, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:50]收→branch:V0.3.6 [2025-06-24 01:45:50]收→V:25919,C:1435,c_c:30,Mode:3 L_Pump:533,L_PS:159,L_PTS:160,L_PP:345 R_Pump:442,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:138,L_WS:116,L_WTS:121,L_WPP:314 R_Wheel:128,R_WS:119,R_WTS:121,R_WPP:311 ir_ML:33,IR_MR:201,IR_SL:2,IR_SR:3,End X:14, Y:-192, Z:-10141 errType: 0. [2025-06-24 01:45:50]收→T:step:1, startAng:270460, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:51]收→V:25919,C:1408,c_c:30,Mode:3 L_Pump:534,L_PS:159,L_PTS:160,L_PP:345 R_Pump:441,R_PS:150,R_PTS:160,R_PP:354 L_Wheel:121,L_WS:120,L_WTS:121,L_WPP:307 R_Wheel:125,R_WS:122,R_WTS:121,R_WPP:311 ir_ML:33,IR_MR:49,IR_SL:17,IR_SR:15,End X:-2, Y:-191, Z:-10048 errType: 0. [2025-06-24 01:45:51]收→T:step:1, startAng:270490, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:52]收→branch:V0.3.6 [2025-06-24 01:45:53]收→T:step:1, startAng:270450, dir:2, stop:0, adjust:270000, Bais:90000,0 V:25928,C:1343,c_c:30,Mode:3 L_Pump:524,L_PS:159,L_PTS:160,L_PP:345 R_Pump:438,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:128,L_WS:125,L_WTS:121,L_WPP:307 R_Wheel:115,R_WS:121,R_WTS:121,R_WPP:312 ir_ML:2,IR_MR:33,IR_SL:16,IR_SR:15,End X:-47, Y:-264, Z:-10290 errType: 0. [2025-06-24 01:45:54]收→T:step:1, startAng:270850, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:54]收→V:25910,C:1439,c_c:30,Mode:3 L_Pump:532,L_PS:159,L_PTS:160,L_PP:345 R_Pump:446,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:128,L_WS:120,L_WTS:121,L_WPP:304 R_Wheel:118,R_WS:121,R_WTS:121,R_WPP:312 ir_ML:1,IR_MR:129,IR_SL:17,IR_SR:16,End X:30, Y:-217, Z:-10031 errType: 0. [2025-06-24 01:45:54]收→branch:V0.3.6 [2025-06-24 01:45:55]收→T:step:1, startAng:271030, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:55]收→V:25919,C:1389,c_c:30,Mode:3 L_Pump:530,L_PS:150,L_PTS:160,L_PP:350 R_Pump:454,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:120,L_WS:124,L_WTS:121,L_WPP:321 R_Wheel:126,R_WS:119,R_WTS:121,R_WPP:294 ir_ML:17,IR_MR:17,IR_SL:2,IR_SR:12,End X:10, Y:-222, Z:-10171 errType: 0. [2025-06-24 01:45:56]收→T:step:1, startAng:271070, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:56]收→V:25919,C:1427,c_c:30,Mode:3 L_Pump:531,L_PS:159,L_PTS:160,L_PP:345 R_Pump:448,R_PS:150,R_PTS:160,R_PP:354 L_Wheel:119,L_WS:124,L_WTS:121,L_WPP:318 R_Wheel:116,R_WS:120,R_WTS:121,R_WPP:294 ir_ML:17,IR_MR:66,IR_SL:16,IR_SR:3,End X:60, Y:-112, Z:-9964 errType: 0. [2025-06-24 01:45:56]收→branch:V0.3.6 [2025-06-24 01:45:57]收→T:step:1, startAng:270890, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:57]收→V:25919,C:1408,c_c:30,Mode:3 L_Pump:531,L_PS:159,L_PTS:160,L_PP:345 R_Pump:447,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:128,L_WS:122,L_WTS:121,L_WPP:319 R_Wheel:132,R_WS:119,R_WTS:121,R_WPP:302 ir_ML:33,IR_MR:81,IR_SL:16,IR_SR:3,End X:12, Y:-221, Z:-10109 errType: 0. [2025-06-24 01:45:58]收→T:step:1, startAng:271090, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:58]收→V:25928,C:1366,c_c:30,Mode:3 L_Pump:524,L_PS:159,L_PTS:160,L_PP:345 R_Pump:445,R_PS:150,R_PTS:160,R_PP:354 L_Wheel:119,L_WS:129,L_WTS:121,L_WPP:313 R_Wheel:130,R_WS:117,R_WTS:121,R_WPP:304 ir_ML:16,IR_MR:17,IR_SL:16,IR_SR:16,End X:64, Y:-218, Z:-10052 errType: 0. [2025-06-24 01:45:58]收→branch:V0.3.6 [2025-06-24 01:45:59]收→T:step:1, startAng:271090, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:45:59]收→V:25928,C:1423,c_c:30,Mode:3 L_Pump:510,L_PS:159,L_PTS:160,L_PP:345 R_Pump:444,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:132,L_WS:127,L_WTS:121,L_WPP:316 R_Wheel:118,R_WS:118,R_WTS:121,R_WPP:301 ir_ML:3,IR_MR:17,IR_SL:3,IR_SR:15,End X:107, Y:-192, Z:-10106 errType: 0. [2025-06-24 01:46:00]收→T:step:1, startAng:270960, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:46:02]收→V:25928,C:1369,c_c:30,Mode:3 L_Pump:507,L_PS:159,L_PTS:160,L_PP:345 R_Pump:434,R_PS:159,R_PTS:160,R_PP:349 L_Wheel:110,L_WS:125,L_WTS:121,L_WPP:317 R_Wheel:142,R_WS:118,R_WTS:121,R_WPP:301 ir_ML:3,IR_MR:115,IR_SL:17,IR_SR:16,End X:123, Y:-157, Z:-9925 errType: 0. [2025-06-24 01:46:02]收→T:step:1, startAng:270760, dir:2, stop:0, adjust:270000, Bais:90000,0 [2025-06-24 01:46:03]收→get L max :3203 get L_N max :3597 [2025-06-24 01:46:04]收→T:step:2, startAng:271560, dir:2, stop:1, adjust:270000, Bais:90000,0 V:25928,C:1258,c_c:30,Mode:3 L_Pump [2025-06-24 01:46:04]收→:515,L_PS:159,L_PTS:160,L_PP:345 R_Pump:443,R_PS:150,R_PTS:160,R_PP:354 L_Wheel:85,L_WS:46,L_WTS:33,L_WPP:117 R_Wheel:77,R_WS:52,R_WTS:33,R_WPP:127 ir_ML:2194,IR_MR:2635,IR_SL:2,IR_SR:12,End X:-277, Y:-163, Z:-10085 errType: 0. [2025-06-24 01:46:05]收→T:step:2, startAng:273300, dir:2, stop:1, adjust:270000, Bais:90000,0 branch:V0.3.6 [2025-06-24 01:46:05]收→V:25919,C:1400,c_c:30,Mode:3 L_Pump:501,L_PS:159,L_PTS:160,L_PP:345 R_Pump:438,R_PS:150,R_PTS:160,R_PP:354 L_Wheel:141,L_WS:29,L_WTS:33,L_WPP:146 R_Wheel:121,R_WS:32,R_WTS:33,R_WPP:166 ir_ML:2116,IR_MR:2494,IR_SL:16,IR_SR:16,End X:175, Y:-138, Z:-10090 errType: 0. [2025-06-24 01:46:05]收→line clean step2 to 6. Line Clean LineStopAngle : 273070, 3070 App_SweepCleanLineInfoDeal: 0, 0, 3, 3 App_SweepCleanLineInfoDeal Ok flag: 1, 1 App_SweepCleanLineInfoDeal.reset..329, 2 G_N:step:0, A:273070,dir:2,willA:90000,newWall:0,wall_down:93409,front_len:1 App_SweepGotoLine Step 1: 193070, 0, 241 [2025-06-24 01:46:06]收→V:25964,C:1036,c_c:30,Mode:3 L_Pump:503,L_PS:0,L_PTS:0,L_PP:0 R_Pump:435,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:13,L_WS:6,L_WTS:66,L_WPP:222 R_Wheel:19,R_WS:0,R_WTS:-22,R_WPP:75 ir_ML:2070,IR_MR:2480,IR_SL:17,IR_SR:16,End X:153, Y:-142, Z:-10117 errType: 0. [2025-06-24 01:46:07]收→ G_N:step:2, A:272730,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:07]收→branch:V0.3.6 [2025-06-24 01:46:07]收→V:26034,C:468,c_c:30,Mode:3 L_Pump:158,L_PS:0,L_PTS:0,L_PP:0 R_Pump:127,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:81,L_WS:68,L_WTS:66,L_WPP:192 R_Wheel:89,R_WS:-25,R_WTS:-22,R_WPP:103 ir_ML:2210,IR_MR:2980,IR_SL:17,IR_SR:16,End X:156, Y:-123, Z:-10076 errType: 0. [2025-06-24 01:46:08]收→ G_N:step:2, A:267360,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:08]收→V:26043,C:368,c_c:30,Mode:3 L_Pump:70,L_PS:0,L_PTS:0,L_PP:0 R_Pump:38,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:9,L_WS:69,L_WTS:66,L_WPP:188 R_Wheel:127,R_WS:0,R_WTS:-22,R_WPP:115 ir_ML:1973,IR_MR:3304,IR_SL:3,IR_SR:11,End X:174, Y:-198, Z:-10161 errType: 0. [2025-06-24 01:46:09]收→ G_N:step:2, A:262960,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:09]收→branch:V0.3.6 [2025-06-24 01:46:09]收→V:26052,C:326,c_c:30,Mode:3 L_Pump:12,L_PS:0,L_PTS:0,L_PP:0 R_Pump:4,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:49,L_WS:76,L_WTS:66,L_WPP:185 R_Wheel:85,R_WS:-34,R_WTS:-22,R_WPP:120 ir_ML:2660,IR_MR:3595,IR_SL:2,IR_SR:3,End X:122, Y:-153, Z:-10076 errType: 0. [2025-06-24 01:46:10]收→ G_N:step:2, A:258209,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:10]收→V:26052,C:314,c_c:34,Mode:3 L_Pump:5,L_PS:0,L_PTS:0,L_PP:0 R_Pump:1,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:56,L_WS:68,L_WTS:66,L_WPP:189 R_Wheel:91,R_WS:-12,R_WTS:-22,R_WPP:133 ir_ML:2707,IR_MR:3039,IR_SL:16,IR_SR:3,End X:136, Y:-172, Z:-10098 errType: 0. G_N:step:2, A:253150,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:11]收→branch:V0.3.6 [2025-06-24 01:46:12]收→ G_N:step:2, A:246860,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 V:26070,C:276,c_c:30,Mode:3 L_Pump:4,L_PS:0,L_PTS:0,L_PP:0 R_Pump:1,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:9,L_WS:65,L_WTS:66,L_WPP:190 R_Wheel:99,R_WS:0,R_WTS:-22,R_WPP:127 ir_ML:3171,IR_MR:1748,IR_SL:16,IR_SR:7,End X:187, Y:-297, Z:-10089 errType: 0. [2025-06-24 01:46:13]收→ G_N:step:2, A:241270,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:13]收→V:26052,C:330,c_c:30,Mode:3 L_Pump:3,L_PS:0,L_PTS:0,L_PP:0 R_Pump:1,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:80,L_WS:68,L_WTS:66,L_WPP:186 R_Wheel:82,R_WS:-36,R_WTS:-22,R_WPP:116 ir_ML:3385,IR_MR:1087,IR_SL:16,IR_SR:14,End X:110, Y:-229, Z:-10055 errType: 0. [2025-06-24 01:46:13]收→branch:V0.3.6 [2025-06-24 01:46:14]收→ G_N:step:2, A:234300,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:14]收→V:26061,C:330,c_c:30,Mode:3 L_Pump:3,L_PS:0,L_PTS:0,L_PP:0 R_Pump:2,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:75,L_WS:62,L_WTS:66,L_WPP:193 R_Wheel:91,R_WS:-32,R_WTS:-22,R_WPP:103 ir_ML:3104,IR_MR:210,IR_SL:17,IR_SR:25,End X:81, Y:-273, Z:-10089 errType: 0. [2025-06-24 01:46:15]收→ G_N:step:2, A:226120,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:15]收→Drv_MotorRunToAngleGotoLine step 0.. [2025-06-24 01:46:15]收→V:26070,C:306,c_c:30,Mode:3 L_Pump:4,L_PS:0,L_PTS:0,L_PP:0 R_Pump:1,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:74,L_WS:64,L_WTS:0,L_WPP:0 R_Wheel:85,R_WS:0,R_WTS:0,R_WPP:0 ir_ML:1800,IR_MR:32,IR_SL:912,IR_SR:25,End X:102, Y:-303, Z:-10041 errType: 0. Drv_MotorRunToAngleGotoLine step 1.. [2025-06-24 01:46:15]收→branch:V0.3.6 [2025-06-24 01:46:16]收→ G_N:step:2, A:219780,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:16]收→Drv_MotorRunToAngleGotoLine step:2....108,45. Drv_MotorRunToAngleGotoLine step 3.. V:26096,C:364,c_c:30,Mode:3 L_Pump:3,L_PS:0,L_PTS:0,L_PP:0 R_Pump:1,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:104,L_WS:107,L_WTS:66,L_WPP:240 R_Wheel:111,R_WS:43,R_WTS:-22,R_WPP:134 ir_ML:2162,IR_MR:136,IR_SL:2014,IR_SR:15,End X:141, Y:-337, Z:-10101 errType: 0. [2025-06-24 01:46:17]收→ G_N:step:2, A:218230,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:17]收→V:26105,C:314,c_c:30,Mode:3 L_Pump:3,L_PS:0,L_PTS:0,L_PP:0 R_Pump:1,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:75,L_WS:70,L_WTS:66,L_WPP:189 R_Wheel:94,R_WS:-34,R_WTS:-22,R_WPP:116 ir_ML:161,IR_MR:2,IR_SL:2766,IR_SR:24,End X:55, Y:-350, Z:-10099 errType: 0. [2025-06-24 01:46:18]收→branch:V0.3.6 G_N:step:2, A:208750,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:18]收→get wall flag ONE :2 [2025-06-24 01:46:18]收→V:26123,C:356,c_c:30,Mode:3 L_Pump:3,L_PS:0,L_PTS:0,L_PP:0 R_Pump:1,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:102,L_WS:62,L_WTS:66,L_WPP:191 R_Wheel:101,R_WS:-31,R_WTS:-22,R_WPP:123 ir_ML:16,IR_MR:32,IR_SL:2670,IR_SR:14,End X:-7, Y:-325, Z:-10125 errType: 0. [2025-06-24 01:46:19]收→ G_N:step:2, A:198360,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:19]收→path plan goto line turn angel 90 .....90,19400,0 [2025-06-24 01:46:19]收→V:26150,C:188,c_c:30,Mode:3 L_Pump:1,L_PS:0,L_PTS:0,L_PP:0 R_Pump:0,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:8,L_WS:0,L_WTS:66,L_WPP:143 R_Wheel:16,R_WS:0,R_WTS:66,R_WPP:143 ir_ML:17,IR_MR:146,IR_SL:2625,IR_SR:15,End X:-55, Y:-418, Z:-10160 errType: 0. [2025-06-24 01:46:20]收→ G_N:step:3, A:193720,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 branch:V0.3.6 [2025-06-24 01:46:21]收→V:26150,C:345,c_c:30,Mode:3 L_Pump:2,L_PS:0,L_PTS:0,L_PP:0 R_Pump:1,R_PS:0,R_PTS:0,R_PP:0 L_Wheel:108,L_WS:71,L_WTS:66,L_WPP:186 R_Wheel:89,R_WS:67,R_WTS:66,R_WPP:199 ir_ML:1,IR_MR:97,IR_SL:3151,IR_SR:7,End X:38, Y:-339, Z:-10151 errType: 0. G_N:step:3, A:193760,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:22]收→ G_N:step:6, A:192410,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 V:26088,C:748,c_c:30,Mode:3 L_Pump:166,L_PS:92,L_PTS:160,L_PP:92 R_Pump:158,R_PS:92,R_PTS:160,R_PP:93 L_Wheel:198,L_WS:44,L_WTS:44,L_WPP:139 R_Wheel:80,R_WS:-198,R_WTS:-187,R_WPP:472 ir_ML:16,IR_MR:33,IR_SL:3316,IR_SR:17,End X:-31, Y:-354, Z:-10068 errType: 0. [2025-06-24 01:46:22]收→branch:V0.3.6 [2025-06-24 01:46:23]收→ G_N:step:6, A:185150,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:23]收→V:26105,C:671,c_c:30,Mode:3 L_Pump:136,L_PS:67,L_PTS:160,L_PP:199 R_Pump:109,R_PS:67,R_PTS:160,R_PP:200 L_Wheel:184,L_WS:43,L_WTS:44,L_WPP:141 R_Wheel:83,R_WS:-181,R_WTS:-187,R_WPP:468 ir_ML:3,IR_MR:65,IR_SL:3322,IR_SR:5,End X:-68, Y:-277, Z:-10041 errType: 0. [2025-06-24 01:46:24]收→ G_N:step:6, A:174150,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:24]收→branch:V0.3.6 V:26070,C:859,c_c:30,Mode:3 L_Pump:180,L_PS:92,L_PTS:160,L_PP:268 R_Pump:147,R_PS:92,R_PTS:160,R_PP:269 L_Wheel:202,L_WS:43,L_WTS:44,L_WPP:141 R_Wheel:84,R_WS:-188,R_WTS:-187,R_WPP:468 ir_ML:16,IR_MR:16,IR_SL:2875,IR_SR:15,End X:-98, Y:-301, Z:-10025 errType: 0. [2025-06-24 01:46:25]收→ G_N:step:6, A:161129,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:25]收→V:25999,C:1151,c_c:30,Mode:3 L_Pump:272,L_PS:117,L_PTS:160,L_PP:315 R_Pump:234,R_PS:117,R_PTS:160,R_PP:317 L_Wheel:217,L_WS:40,L_WTS:33,L_WPP:126 R_Wheel:91,R_WS:-180,R_WTS:-187,R_WPP:479 ir_ML:1,IR_MR:146,IR_SL:1297,IR_SR:15,End X:-177, Y:-266, Z:-10054 errType: 0. [2025-06-24 01:46:26]收→ G_N:step:6, A:146510,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:26]收→branch:V0.3.6 [2025-06-24 01:46:26]收→V:25946,C:1224,c_c:30,Mode:3 L_Pump:360,L_PS:142,L_PTS:160,L_PP:330 R_Pump:318,R_PS:134,R_PTS:160,R_PP:338 L_Wheel:290,L_WS:32,L_WTS:28,L_WPP:117 R_Wheel:83,R_WS:-190,R_WTS:-165,R_WPP:460 ir_ML:1,IR_MR:17,IR_SL:3,IR_SR:15,End X:-215, Y:-307, Z:-10081 errType: 0. [2025-06-24 01:46:27]收→ G_N:step:6, A:131800,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:27]收→V:25937,C:1304,c_c:30,Mode:3 L_Pump:437,L_PS:150,L_PTS:160,L_PP:338 R_Pump:386,R_PS:142,R_PTS:160,R_PP:346 L_Wheel:224,L_WS:30,L_WTS:28,L_WPP:111 R_Wheel:83,R_WS:-173,R_WTS:-165,R_WPP:431 ir_ML:3,IR_MR:65,IR_SL:5,IR_SR:16,End X:-204, Y:-233, Z:-10081 errType: 0. [2025-06-24 01:46:28]收→ G_N:step:6, A:116189,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:28]收→branch:V0.3.6 [2025-06-24 01:46:28]收→V:25937,C:1254,c_c:30,Mode:3 L_Pump:485,L_PS:150,L_PTS:160,L_PP:349 R_Pump:434,R_PS:150,R_PTS:160,R_PP:353 L_Wheel:190,L_WS:27,L_WTS:13,L_WPP:82 R_Wheel:70,R_WS:-138,R_WTS:-88,R_WPP:292 ir_ML:3,IR_MR:146,IR_SL:17,IR_SR:4,End X:-275, Y:-186, Z:-10105 errType: 0. [2025-06-24 01:46:29]收→ G_N:step:6, A:102450,dir:2,willA:90000,newWall:0,wall_down:273070,front_len:1 [2025-06-24 01:46:29]收→T:step:0, startAng:97009, dir:2, stop:1, adjust:270000, Bais:90000,0 Line clean gPath_plan.cleanLineInfo[5] = 90 [2025-06-24 01:46:30]收→V:25955,C:1174,c_c:30,Mode:3 L_Pump:507,L_PS:150,L_PTS:120,L_PP:318 R_Pump:449,R_PS:159,R_PTS:120,R_PP:318 L_Wheel:13,L_WS:0,L_WTS:55,L_WPP:119 R_Wheel:20,R_WS:0,R_WTS:55,R_WPP:20 ir_ML:3,IR_MR:82,IR_SL:17,IR_SR:3,End X:-230, Y:-152, Z:-10094 这些数据总共有212844行,我希望生成的表格数据为 :时间,V,C,L_Pump,R_Pump为一行
06-30
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值