https://code.google.com/p/android/issues错误或android studio 更新SDK问题

首先,打开文件夹bin您安装的Android Studio中的目录下。

然后,找到该文件idea.properties,并用记事本++ /用UltraEdit / other_edit_tools打开它。

接着,添加disable.android.first.run=true的最后一行,并保存文件。

最后,重新启动Android的工作室。


以上操作完还是更新SDK那么给你三个选择:

一、把网络断掉重启Android stuidio

二、翻墙 请参考http://blog.youkuaiyun.com/u011221715/article/details/47833979这篇文章

三、暴力一点拆卸(这个有点low不专业对吧)


Flutter assets will be downloaded from https://storage.googleapis.com. Make sure you trust this source! Doctor summary (to see all details, run flutter doctor -v): [☠] Flutter (the doctor check crashed) X Due to an error, the doctor check did not complete. If the error message below is not helpful, please let us know about this issue at https://github.com/flutter/flutter/issues. X Error: Cannot find the executable for `where`. This can happen if the System32 folder (e.g. C:\Windows\System32 ) is removed from the PATH environment variable. Ensure that this is present and then try again after restarting the terminal and/or IDE. [√] Windows Version (Windows 10) [!] Android toolchain - develop for Android devices (Android SDK version 35.0.1) X cmdline-tools component is missing Run `path/to/sdkmanager --install "cmdline-tools;latest"` See https://developer.android.com/studio/command-line for more details. X Android license status unknown. Run `flutter doctor --android-licenses` to accept the SDK licenses. See https://flutter.dev/to/windows-android-setup for more details. [X] Chrome - develop for the web (Cannot find Chrome executable at .\Google\Chrome\Application\chrome.exe) ! Cannot find Chrome. Try setting CHROME_EXECUTABLE to a Chrome executable. [X] Visual Studio - develop Windows apps X Visual Studio not installed; this is necessary to develop Windows apps. Download at https://visualstudio.microsoft.com/downloads/. Please install the "Desktop development with C++" workload, including all of its default components [√] Android Studio (version 2024.3) [√] VS Code (version 1.98.1) [√] Connected device (1 available) [√] Network resources ! Doctor found issues in 4 categories.
03-13
# 3D Cinemagraphy from a Single Image (CVPR 2023) [Xingyi Li](https://scholar.google.com/citations?user=XDKQsvUAAAAJ&hl)<sup>1,3</sup>, [Zhiguo Cao](http://english.aia.hust.edu.cn/info/1085/1528.htm)<sup>1</sup>, [Huiqiang Sun](https://huiqiang-sun.github.io/)<sup>1</sup>, [Jianming Zhang](https://jimmie33.github.io/)<sup>2</sup>, [Ke Xian](https://kexianhust.github.io/)<sup>3*</sup>, [Guosheng Lin](https://guosheng.github.io/)<sup>3</sup> <sup>1</sup>Huazhong University of Science and Technology, <sup>2</sup>Adobe Research, <sup>3</sup>S-Lab, Nanyang Technological University [Project](https://xingyi-li.github.io/3d-cinemagraphy/) | [Paper](https://github.com/xingyi-li/3d-cinemagraphy/blob/main/pdf/3d-cinemagraphy-paper.pdf) | [arXiv](https://arxiv.org/abs/2303.05724) | [Video](https://youtu.be/sqCy7ffTEEY) | [Supp](https://github.com/xingyi-li/3d-cinemagraphy/blob/main/pdf/3d-cinemagraphy-supp.pdf) | [Poster](https://github.com/xingyi-li/3d-cinemagraphy/blob/main/pdf/3d-cinemagraphy-poster.pdf) This repository contains the official PyTorch implementation of our CVPR 2023 paper "3D Cinemagraphy from a Single Image". ## Installation ``` git clone https://github.com/xingyi-li/3d-cinemagraphy.git cd 3d-cinemagraphy bash requirements.sh ``` ## Usage Download pretrained models from [Google Drive](https://drive.google.com/file/d/1ROxvB7D-vNYl4eYmIzZ5Gitg84amMd19/view?usp=sharing), then unzip and put them in the directory `ckpts`. To achieve better motion estimation results and controllable animation, here we provide the controllable version. Firstly, use [labelme](https://github.com/wkentaro/labelme) to specify the target regions (masks) and desired movement directions (hints): ```shell conda activate 3d-cinemagraphy cd demo/0/ labelme image.png ``` A screenshot here: ![labelme](assets/labelme.png) It is recommended to specify **short** hints rather than long hints to avoid artifacts. Please follow [labelme](https://github.com/wkentaro/labelme) for detailed instructions if needed. After that, we can obtain an image.json file. Our next step is to convert the annotations stored in JSON format into datasets that can be used by our method: ```shell labelme_json_to_dataset image.json # this will generate a folder image_json cd ../../ python scripts/generate_mask.py --inputdir demo/0/image_json ``` We now can create 3D cinemagraphs according to your preference: ```shell python demo.py -c configs/config.yaml --input_dir demo/0/ --ckpt_path ckpts/model_150000.pth --flow_scale 1.0 --ds_factor 1.0 ``` - `input_dir`: input folder that contains src images. - `ckpt_path`: checkpoint path. - `flow_scale`: scale that used to control the speed of fluid, > 1.0 will slow down the fluid. - `ds_factor`: downsample factor for the input images. Results will be saved to the `input_dir/output`. ## Known issues - Due to the limited size of the training dataset, the intermediate frame may occasionally experience flickering. - The utilization of a fixed distance threshold in agglomerative clustering within the disparity space can occasionally result in the presence of visible boundaries between different layers. - We may sometimes see artifacts when the fluid is moving very fast. You can either slow down the fluid by increasing the `flow_scale` or try to specify short hints rather than long hints, to avoid artifacts. - The motion estimation module occasionally generates motion fields that do not perfectly align with the desired preferences. ## Citation If you find our work useful in your research, please consider to cite our paper: ``` @InProceedings{li2023_3dcinemagraphy, author = {Li, Xingyi and Cao, Zhiguo and Sun, Huiqiang and Zhang, Jianming and Xian, Ke and Lin, Guosheng}, title = {3D Cinemagraphy From a Single Image}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2023}, pages = {4595-4605} } ``` ## Relevant works - [Animating Pictures with Eulerian Motion Fields](https://openaccess.thecvf.com/content/CVPR2021/papers/Holynski_Animating_Pictures_With_Eulerian_Motion_Fields_CVPR_2021_paper.pdf), CVPR 2021 - [Controllable Animation of Fluid Elements in Still Images](https://openaccess.thecvf.com/content/CVPR2022/papers/Mahapatra_Controllable_Animation_of_Fluid_Elements_in_Still_Images_CVPR_2022_paper.pdf), CVPR 2022 - [Simulating Fluids in Real-World Still Images](https://arxiv.org/pdf/2204.11335), arXiv 2022 - [3D Photography using Context-aware Layered Depth Inpainting](https://openaccess.thecvf.com/content_CVPR_2020/papers/Shih_3D_Photography_Using_Context-Aware_Layered_Depth_Inpainting_CVPR_2020_paper.pdf), CVPR 2020 - [3D Photo Stylization: Learning to Generate Stylized Novel Views from a Single Image](https://openaccess.thecvf.com/content/CVPR2022/papers/Mu_3D_Photo_Stylization_Learning_To_Generate_Stylized_Novel_Views_From_CVPR_2022_paper.pdf), CVPR 2022 - [3D Moments from Near-Duplicate Photos](https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_3D_Moments_From_Near-Duplicate_Photos_CVPR_2022_paper.pdf), CVPR 2022 - [3D Video Loops from Asynchronous Input](https://openaccess.thecvf.com/content/CVPR2023/papers/Ma_3D_Video_Loops_From_Asynchronous_Input_CVPR_2023_paper.pdf), CVPR 2023 ## Acknowledgement This code borrows heavily from [3D Moments](https://github.com/google-research/3d-moments) and [SLR-SFS](https://github.com/simon3dv/SLR-SFS). We thank the respective authors for open sourcing their methods.
最新发布
06-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值