跟POJ2154一样的思路,但是这题多了个颜色限制
构造关系矩阵,每次有i个循环节,就做i次矩阵乘法,得到的就是每个颜色经过i步能回到自身的情况数,利用矩阵快速幂就可以快速计算了
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MOD = 9973;
int t, n, m, k;
struct Mat {
int v[11][11];
Mat() {memset(v, 0, sizeof(v));}
Mat operator * (Mat c) {
Mat ans;
for (int i = 0; i < m; i++) {
for (int j = 0; j < m; j++) {
for (int k = 0; k < m; k++) {
ans.v[i][j] = (ans.v[i][j] + v[i][k] * c.v[k][j]) % MOD;
}
}
}
return ans;
}
};
int phi(int n) {
int ans = n;
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) {
ans = ans / i * (i - 1);
while (n % i == 0) n /= i;
}
}
if (n > 1) ans = ans / n * (n - 1);
return ans % MOD;
}
int cal(Mat A, int k) {
Mat ans;
for (int i = 0; i < m; i++)
ans.v[i][i] = 1;
while (k) {
if (k&1) ans = ans * A;
A = A * A;
k >>= 1;
}
int out = 0;
for (int i = 0; i < m; i++)
out = (out + ans.v[i][i]) % MOD;
return out;
}
int pow_mod(int x, int k) {
x %= MOD;
int ans = 1;
while (k) {
if (k&1) ans = ans * x % MOD;
x = x * x % MOD;
k >>= 1;
}
return ans;
}
int main() {
scanf("%d", &t);
while (t--) {
scanf("%d%d%d", &n, &m, &k);
int u, v;
Mat A;
for (int i = 0; i < m; i++)
for (int j = 0; j < m; j++)
A.v[i][j] = 1;
while (k--) {
scanf("%d%d", &u, &v);
A.v[u - 1][v - 1] = 0;
A.v[v - 1][u - 1] = 0;
}
int ans = 0;
for (int i = 1; i * i <= n; i++) {
if (n % i == 0) {
ans = (ans + phi(n / i) * cal(A, i)) % MOD;
if (n / i != i) {
int tmp = n / i;
ans = (ans + phi(n / tmp) * cal(A, tmp)) % MOD;
}
}
}
printf("%d\n", ans * pow_mod(n, MOD - 2) % MOD);
}
return 0;
}