HDU 3416 Marriage Match IV
题意:给一个有向图,给定起点终点,问最多多少条点可以重复,边不能重复的最短路
思路:边不能重复,以为着每个边的容量就是1了,最大流问题,那么问题只要能把最短路上的边找出来,跑一下最大流即可,判断一条边是否是最短路上的边,就从起点和终点各做一次dijstra,求出最短路距离后,如果一条边满足d1[u] + d2[v] + w(u, v) == Mindist,那么这条边就是了
代码:
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int MAXNODE = 1005;
const int MAXEDGE = 200005;
typedef int Type;
const Type INF = 0x3f3f3f3f;
struct Edge {
int u, v;
Type cap, flow;
Edge() {}
Edge(int u, int v, Type cap, Type flow) {
this->u = u;
this->v = v;
this->cap = cap;
this->flow = flow;
}
};
struct Dinic {
int n, m, s, t;
Edge edges[MAXEDGE];
int first[MAXNODE];
int next[MAXEDGE];
bool vis[MAXNODE];
Type d[MAXNODE];
int cur[MAXNODE];
vector<int> cut;
void init(int n) {
this->n = n;
memset(first, -1, sizeof(first));
m = 0;
}
void add_Edge(int u, int v, Type cap) {
edges[m] = Edge(u, v, cap, 0);
next[m] = first[u];
first[u] = m++;
edges[m] = Edge(v, u, 0, 0);
next[m] = first[v];
first[v] = m++;
}
bool bfs() {
memset(vis, false, sizeof(vis));
queue<int> Q;
Q.push(s);
d[s] = 0;
vis[s] = true;
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (int i = first[u]; i != -1; i = next[i]) {
Edge& e = edges[i];
if (!vis[e.v] && e.cap > e.flow) {
vis[e.v] = true;
d[e.v] = d[u] + 1;
Q.push(e.v);
}
}
}
return vis[t];
}
Type dfs(int u, Type a) {
if (u == t || a == 0) return a;
Type flow = 0, f;
for (int &i = cur[u]; i != -1; i = next[i]) {
Edge& e = edges[i];
if (d[u] + 1 == d[e.v] && (f = dfs(e.v, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[i^1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
}
Type Maxflow(int s, int t) {
this->s = s; this->t = t;
Type flow = 0;
while (bfs()) {
for (int i = 0; i < n; i++)
cur[i] = first[i];
flow += dfs(s, INF);
}
return flow;
}
void MinCut() {
cut.clear();
for (int i = 0; i < m; i += 2) {
if (vis[edges[i].u] && !vis[edges[i].v])
cut.push_back(i);
}
}
} gao;
struct Edge2 {
int u, v;
Type dist;
Edge2() {}
Edge2(int u, int v, Type dist) {
this->u = u;
this->v = v;
this->dist = dist;
}
void read() {
scanf("%d%d%d", &u, &v, &dist);
}
};
struct HeapNode {
Type d;
int u;
HeapNode() {}
HeapNode(Type d, int u) {
this->d = d;
this->u = u;
}
bool operator < (const HeapNode& c) const {
return d > c.d;
}
};
struct Dijkstra {
int n, m;
Edge2 edges[MAXEDGE];
int first[MAXNODE];
int next[MAXEDGE];
bool done[MAXNODE];
Type d[MAXNODE];
void init(int n) {
this->n = n;
memset(first, -1, sizeof(first));
m = 0;
}
void add_Edge(int u, int v, Type dist) {
edges[m] = Edge2(u, v, dist);
next[m] = first[u];
first[u] = m++;
}
void dijkstra(int s) {
priority_queue<HeapNode> Q;
for (int i = 1; i <= n; i++) d[i] = INF;
d[s] = 0;
memset(done, false, sizeof(done));
Q.push(HeapNode(0, s));
while (!Q.empty()) {
HeapNode x = Q.top(); Q.pop();
int u = x.u;
if (done[u]) continue;
done[u] = true;
for (int i = first[u]; i != -1; i = next[i]) {
Edge2& e = edges[i];
if (d[e.v] > d[u] + e.dist) {
d[e.v] = d[u] + e.dist;
Q.push(HeapNode(d[e.v], e.v));
}
}
}
}
} gao2;
const int N = 1005;
const int M = 100005;
int T, n, m, sd[N], td[N], s, t, Min;
Edge2 es[M];
int main() {
scanf("%d", &T);
while (T--) {
scanf("%d%d", &n, &m);
gao2.init(n);
for (int i = 0; i < m; i++) {
es[i].read();
gao2.add_Edge(es[i].u, es[i].v, es[i].dist);
}
scanf("%d%d", &s, &t);
gao2.dijkstra(s);
Min = gao2.d[t];
for (int i = 1; i <= n; i++)
sd[i] = gao2.d[i];
gao2.init(n);
for (int i = 0; i < m; i++)
gao2.add_Edge(es[i].v, es[i].u, es[i].dist);
gao2.dijkstra(t);
for (int i = 1; i <= n; i++)
td[i] = gao2.d[i];
gao.init(n + 1);
for (int i = 0; i < m; i++) {
if (sd[es[i].u] + td[es[i].v] + es[i].dist == Min)
gao.add_Edge(es[i].u, es[i].v, 1);
}
printf("%d\n", gao.Maxflow(s, t));
}
return 0;
}