题目链接:11752 - The Super Powers
题意:求出1到2^64-1之间所有能化成至少两种x^y形式的数。
思路:如果y是合数必然可以,所以最少从4开始,这样只要枚举到2^16即可,然后注意判断超没超范围要先用log去取最大的合数能取到多少,不然会超ull范围
代码:
#include <stdio.h>
#include <string.h>
#include <set>
#include <iostream>
#include <math.h>
using namespace std;
typedef unsigned long long ll;
int he[65], hn;
set<ll> ans;
void table() {
hn = 0;
int vis[65]; memset(vis, 0, sizeof(vis));
for (int i = 2; i <= 64; i++) {
if (vis[i]) he[hn++] = i;
for (int j = i; j <= 64; j += i) {
vis[j] = 1;
}
}
}
ll pow(ll n, int k) {
if (k == 0) return 1;
if (k <= 1) return n;
ll ans = pow(n * n, k / 2);
if (k&1) ans *= n;
return ans;
}
int main() {
table();
ll Max = (1<<16);
for (ll i = 2; i < Max; i++) {
int Max2 = ceil(64 * log(2) / log(i)) - 1;
for (int j = 0; he[j] <= Max2; j++) {
ans.insert(pow(i, he[j]));
}
}
printf("1\n");
for (set<ll>::iterator it = ans.begin(); it != ans.end(); it++)
cout << *it << endl;
return 0;
}