Codeforces Round #226 (Div. 2)

本文介绍了一系列编程挑战赛题目,包括熊储存越冬覆盆子的策略、字符串中包含“bear”的子串计数、涉及素数的数据结构问题、利用灯光照亮路径的最远距离计算,以及预测熊在覆盆子田中移动的最终位置。



A. Bear and Raspberry
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

The bear decided to store some raspberry for the winter. He cunningly found out the price for a barrel of honey in kilos of raspberry for each of the following n days. According to the bear's data, on the i-th (1 ≤ i ≤ n) day, the price for one barrel of honey is going to is xikilos of raspberry.

Unfortunately, the bear has neither a honey barrel, nor the raspberry. At the same time, the bear's got a friend who is ready to lend him a barrel of honey for exactly one day for c kilograms of raspberry. That's why the bear came up with a smart plan. He wants to choose some day d (1 ≤ d < n), lent a barrel of honey and immediately (on day d) sell it according to a daily exchange rate. The next day (d + 1) the bear wants to buy a new barrel of honey according to a daily exchange rate (as he's got some raspberry left from selling the previous barrel) and immediately (on day d + 1) give his friend the borrowed barrel of honey as well as c kilograms of raspberry for renting the barrel.

The bear wants to execute his plan at most once and then hibernate. What maximum number of kilograms of raspberry can he earn? Note that if at some point of the plan the bear runs out of the raspberry, then he won't execute such a plan.

Input

The first line contains two space-separated integers, n and c (2 ≤ n ≤ 100, 0 ≤ c ≤ 100), — the number of days and the number of kilos of raspberry that the bear should give for borrowing the barrel.

The second line contains n space-separated integers x1, x2, ..., xn (0 ≤ xi ≤ 100), the price of a honey barrel on day i.

Output

Print a single integer — the answer to the problem.

Sample test(s)
input
5 1
5 10 7 3 20
output
3
input
6 2
100 1 10 40 10 40
output
97
input
3 0
1 2 3
output
0
Note

In the first sample the bear will lend a honey barrel at day 3 and then sell it for 7. Then the bear will buy a barrel for 3 and return it to the friend. So, the profit is (7 - 3 - 1) = 3.

In the second sample bear will lend a honey barrel at day 1 and then sell it for 100. Then the bear buy the barrel for 1 at the day 2. So, the profit is (100 - 1 - 2) = 97.

A题:水题,要注意点 小于0的答案输出0.

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;

int n, c, num[105], i;

int main() {
    int ans = 0;
    scanf("%d%d", &n, &c);
    for (i = 0; i < n; i++)
        scanf("%d", &num[i]);
    for (i = 0; i < n - 1; i++)
        if (num[i] - num[i + 1] > ans)
            ans = num[i] - num[i + 1];
    if (ans - c < 0) printf("0\n");
    else printf("%d\n", ans - c);
    return 0;
}

B. Bear and Strings
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

The bear has a string s = s1s2... s|s| (record |s| is the string's length), consisting of lowercase English letters. The bear wants to count the number of such pairs of indices i, j (1 ≤ i ≤ j ≤ |s|), that string x(i, j) = sisi + 1... sj contains at least one string "bear" as a substring.

String x(i, j) contains string "bear", if there is such index k (i ≤ k ≤ j - 3), that sk = bsk + 1 = esk + 2 = ask + 3 = r.

Help the bear cope with the given problem.

Input

The first line contains a non-empty string s (1 ≤ |s| ≤ 5000). It is guaranteed that the string only consists of lowercase English letters.

Output

Print a single number — the answer to the problem.

Sample test(s)
input
bearbtear
output
6
input
bearaabearc
output
20
Note

In the first sample, the following pairs (i, j) match: (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9).

In the second sample, the following pairs (i, j) match: (1,  4), (1,  5), (1,  6), (1,  7), (1,  8), (1,  9), (1,  10), (1,  11), (2,  10), (2,  11), (3,  10), (3,  11), (4,  10), (4,  11), (5,  10), (5,  11), (6,  10), (6,  11), (7,  10), (7,  11).

B题:问有几个包含至少一个bear字串。

思路:O(n)。每次找到bear就计算前面字母个数x和后面字母个数y,然后(x + 1) * (y + 1) - 上一个的(x + 1) * (y + 1)(用来除去重复的)

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;

char str[5005];
__int64 i, j, x, y;
__int64 ans = 0;

int main() {
    scanf("%s", str);
    __int64 len = strlen(str);
    x = 0;
    for (i = 0; i < len - 3; i++) {
        if (str[i] == 'b' && str[i + 1] == 'e' && str[i + 2] == 'a' && str[i + 3] == 'r') {
            ans += (i + 1) * (len - i - 3) - (len - i - 3) * x;
            x = i + 1;
        }
    }
    printf("%I64d\n", ans);
    return 0;
}

C. Bear and Prime Numbers
time limit per test
2 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output

Recently, the bear started studying data structures and faced the following problem.

You are given a sequence of integers x1, x2, ..., xn of length n and m queries, each of them is characterized by two integers li, ri. Let's introduce f(p) to represent the number of such indexes k, that xk is divisible by p. The answer to the query li, ri is the sum: , where S(li, ri) is a set of prime numbers from segment [li, ri] (both borders are included in the segment).

Help the bear cope with the problem.

Input

The first line contains integer n (1 ≤ n ≤ 106). The second line contains n integers x1, x2, ..., xn (2 ≤ xi ≤ 107). The numbers are not necessarily distinct.

The third line contains integer m (1 ≤ m ≤ 50000). Each of the following m lines contains a pair of space-separated integers, li and ri(2 ≤ li ≤ ri ≤ 2·109) — the numbers that characterize the current query.

Output

Print m integers — the answers to the queries on the order the queries appear in the input.

Sample test(s)
input
6
5 5 7 10 14 15
3
2 11
3 12
4 4
output
9
7
0
input
7
2 3 5 7 11 4 8
2
8 10
2 123
output
0
7
Note

Consider the first sample. Overall, the first sample has 3 queries.

  1. The first query l = 2r = 11 comes. You need to count f(2) + f(3) + f(5) + f(7) + f(11) = 2 + 1 + 4 + 2 + 0 = 9.
  2. The second query comes l = 3r = 12. You need to count f(3) + f(5) + f(7) + f(11) = 1 + 4 + 2 + 0 = 7.
  3. The third query comes l = 4r = 4. As this interval has no prime numbers, then the sum equals 0.

C题:直接在筛素数的过程把和求出来即可,然后用前缀和访问每个区间的和

代码:

#include <stdio.h>
#include <string.h>

const int N = 10000001;

int vis[N], sum[N], v[N];

void init() {
	int num, n;
	scanf("%d", &n);
	for (int i = 0; i < n; i++) {
		scanf("%d", &num);
		vis[num]++;
	}
}

void cal() {
	for (int i = 2; i < N; i++) {
		if (v[i]) continue;
		for (int j = i; j < N; j += i) {
			if (vis[j]) sum[i] += vis[j];
			v[j] = 1;
		}
	}
}

void solve() {
	for (int i = 2; i < N; i++)
		sum[i] += sum[i - 1];
	int m, l, r;
	scanf("%d", &m);
	while (m--) {
		scanf("%d%d", &l, &r);
		if (r >= N) r = N - 1;
		if (l >= N) l = N;
		printf("%d\n", sum[r] - sum[l - 1]);
	}
}

int main() {
	init();
	cal();
	solve();
	return 0;
}

D. Bear and Floodlight
time limit per test
4 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

One day a bear lived on the Oxy axis. He was afraid of the dark, so he couldn't move at night along the plane points that aren't lit. One day the bear wanted to have a night walk from his house at point (l, 0) to his friend's house at point (r, 0), along the segment of length(r - l). Of course, if he wants to make this walk, he needs each point of the segment to be lit. That's why the bear called his friend (and yes, in the middle of the night) asking for a very delicate favor.

The Oxy axis contains n floodlights. Floodlight i is at point (xi, yi) and can light any angle of the plane as large as ai degree with vertex at point (xi, yi). The bear asked his friend to turn the floodlights so that he (the bear) could go as far away from his house as possible during the walking along the segment. His kind friend agreed to fulfill his request. And while he is at it, the bear wonders: what is the furthest he can go away from his house? Hep him and find this distance.

Consider that the plane has no obstacles and no other light sources besides the floodlights. The bear's friend cannot turn the floodlights during the bear's walk. Assume that after all the floodlights are turned in the correct direction, the bear goes for a walk and his friend goes to bed.

Input

The first line contains three space-separated integers nlr (1 ≤ n ≤ 20;  - 105 ≤ l ≤ r ≤ 105). The i-th of the next n lines contain three space-separated integers xiyiai ( - 1000 ≤ xi ≤ 1000; 1 ≤ yi ≤ 1000; 1 ≤ ai ≤ 90) — the floodlights' description.

Note that two floodlights can be at the same point of the plane.

Output

Print a single real number — the answer to the problem. The answer will be considered correct if its relative or absolute error doesn't exceed 10 - 6.

Sample test(s)
input
2 3 5
3 1 45
5 1 45
output
2.000000000
input
1 0 1
1 1 30
output
0.732050808
input
1 0 1
1 1 45
output
1.000000000
input
1 0 2
0 2 90
output
2.000000000
思路:dp+几何,在计算灯能覆盖的面积的时候,利用向量的方法去求,然后dp求最大长度。

代码:

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
const int N = 25;
const double pi = acos(-1.0);

int n;
double l, r, dp[1<<20];
struct D {
    double x, y, du;
    void scan() {
        scanf("%lf%lf%lf", &x, &y, &du);
        du = du * pi / 180.0;
        x -= l;
    }
} d[N];

double cal(int i, double x0) {
    double dx = x0 - d[i].x;
    double dy = -d[i].y;
    double x1 = dx * cos(d[i].du) - dy * sin(d[i].du);
    double y1 = dx * sin(d[i].du) + dy * cos(d[i].du);
    if (fabs(y1) < 1e-12 || y1 > 0) return r;
    return min(r, d[i].x - d[i].y * x1 / y1);
}

void init() {
    scanf("%d%lf%lf", &n, &l, &r); r -= l;
    for (int i = 0; i < n; i++)
        d[i].scan();
}

double solve() {
    for (int i = 0; i < (1<<n); i++) {
        for (int j = 0; j < n; j++) {
            if (i&(1<<j)) continue;
            dp[i|(1<<j)] = max(dp[i|(1<<j)], cal(j, dp[i]));
        }
    }
    return dp[(1<<n) - 1];
}

int main() {
    init();
    printf("%.9lf\n", solve());
    return 0;
}

E. Bear in the Field
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Our bear's forest has a checkered field. The checkered field is an n × n table, the rows are numbered from 1 to n from top to bottom, the columns are numbered from 1 to n from left to right. Let's denote a cell of the field on the intersection of row x and column y by record(x, y). Each cell of the field contains growing raspberry, at that, the cell (x, y) of the field contains x + y raspberry bushes.

The bear came out to walk across the field. At the beginning of the walk his speed is (dx, dy). Then the bear spends exactly t seconds on the field. Each second the following takes place:

  • Let's suppose that at the current moment the bear is in cell (x, y).
  • First the bear eats the raspberry from all the bushes he has in the current cell. After the bear eats the raspberry from k bushes, he increases each component of his speed by k. In other words, if before eating the k bushes of raspberry his speed was (dx, dy), then after eating the berry his speed equals (dx + k, dy + k).
  • Let's denote the current speed of the bear (dx, dy) (it was increased after the previous step). Then the bear moves from cell (x, y)to cell (((x + dx - 1) mod n) + 1, ((y + dy - 1) mod n) + 1).
  • Then one additional raspberry bush grows in each cell of the field.

You task is to predict the bear's actions. Find the cell he ends up in if he starts from cell (sx, sy). Assume that each bush has infinitely much raspberry and the bear will never eat all of it.

Input

The first line of the input contains six space-separated integers: nsxsydxdyt (1 ≤ n ≤ 109; 1 ≤ sx, sy ≤ n;  - 100 ≤ dx, dy ≤ 100; 0 ≤ t ≤ 1018).

Output

Print two integers — the coordinates of the cell the bear will end up in after t seconds.

Sample test(s)
input
5 1 2 0 1 2
output
3 1
input
1 1 1 -1 -1 2
output
1 1
Note

Operation a mod b means taking the remainder after dividing a by b. Note that the result of the operation is always non-negative. For example, ( - 1) mod 3 = 2.

In the first sample before the first move the speed vector will equal (3,4) and the bear will get to cell (4,1). Before the second move the speed vector will equal (9,10) and he bear will get to cell (3,1). Don't forget that at the second move, the number of berry bushes increased by 1.

In the second sample before the first move the speed vector will equal (1,1) and the bear will get to cell (1,1). Before the second move, the speed vector will equal (4,4) and the bear will get to cell (1,1). Don't forget that at the second move, the number of berry bushes increased by 1.


E题:应该是矩阵快速幂,暂时没什么想法。都以后有想法回头补上

推出公式后,由于有取模操作,所以先把坐标系化为0 - n-1最后在加1即可。

代码:

#include <stdio.h>
#include <string.h>

__int64 n, sx, sy, dx, dy, t;

struct mat {
	__int64 v[10][10];
	mat() {
		memset(v, 0, sizeof(v));
	}
	void init() {
		int m[10][10] = {
			{2, 1, 1, 0, 1, 2},
			{1, 2, 0, 1, 1, 2},
			{1, 1, 1, 0, 1, 2},
			{1, 1, 0, 1 ,1, 2},
			{0, 0, 0, 0, 1, 1},
			{0, 0, 0, 0, 0, 1},
		};
		for (int i = 0; i < 6; i++)
			for (int j = 0; j < 6; j++)
				v[i][j] = m[i][j];
	}
	mat operator * (const mat &a) {
		mat c;
		for (int i = 0; i < 6; i++)
			for (int j = 0; j < 6; j++)
				for (int k = 0; k < 6; k++) {
					c.v[i][j] = ((c.v[i][j] + v[i][k] * a.v[k][j]) % n + n) % n;
				}
		return c;
	}
};

mat pow_mod(mat a, __int64 k) {
	if (k <= 1) return a;
	mat c = pow_mod(a * a, k / 2);
	if (k % 2)
		c = c * a;
	return c;
}

int main() {
	scanf("%I64d%I64d%I64d%I64d%I64d%I64d", &n, &sx, &sy, &dx, &dy, &t);
	mat m; m.init();
	m = pow_mod(m, t);
	__int64 ansx = (((m.v[0][0] * (sx - 1) + m.v[0][1] * (sy - 1) + m.v[0][2] * dx + m.v[0][3] * dy + m.v[0][5]) % n) + n) % n;
	__int64 ansy = (((m.v[1][0] * (sx - 1) + m.v[1][1] * (sy - 1) + m.v[1][2] * dx + m.v[1][3] * dy + m.v[1][5]) % n) + n) % n;
	printf("%I64d %I64d\n", ansx + 1, ansy + 1);
	return 0;
}


【事件触发一致性】研究多智能体网络如何通过分布式事件驱动控制实现有限时间内的共识(Matlab代码实现)内容概要:本文围绕多智能体网络中的事件触发一致性问题,研究如何通过分布式事件驱动控制实现有限时间内的共识,并提供了相应的Matlab代码实现方案。文中探讨了事件触发机制在降低通信负担、提升系统效率方面的优势,重点分析了多智能体系统在有限时间收敛的一致性控制策略,涉及系统模型构建、触发条件设计、稳定性与收敛性分析等核心技术环节。此外,文档还展示了该技术在航空航天、电力系统、机器人协同、无人机编队等多个前沿领域的潜在应用,体现了其跨学科的研究价值和工程实用性。; 适合人群:具备一定控制理论基础和Matlab编程能力的研究生、科研人员及从事自动化、智能系统、多智能体协同控制等相关领域的工程技术人员。; 使用场景及目标:①用于理解和实现多智能体系统在有限时间内达成一致的分布式控制方法;②为事件触发控制、分布式优化、协同控制等课题提供算法设计与仿真验证的技术参考;③支撑科研项目开发、学术论文复现及工程原型系统搭建; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点关注事件触发条件的设计逻辑与系统收敛性证明之间的关系,同时可延伸至其他应用场景进行二次开发与性能优化。
评论 5
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值