UVA 10759 Dice Throwing(dp 概率)

本文介绍了一种使用动态规划算法解决骰子投掷问题的方法,旨在计算特定条件下骰子组合出现的概率,并通过代码实例展示了如何求解最简概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem A
Dice Throwing
Input:
 standard input
Output: standard output
Time Limit: 1 second

 

n common cubic dice are thrown. What is the probability that the sum of all thrown dice is at least x?
  
Input

The input file contains several test cases. Each test case consists two integers n (1<=n<=24) and x(0<=x<150). The meanings of n and x are given in the problem statement. Input is terminated by a case where n=0 and x=0. This case should not be processed.

 

Output

For each line of input produce one line of output giving the requested probability as a proper fraction in lowest terms in the format shown in the sample output. All numbers appearing in output are representable in unsigned 64-bit integers. The last line of input contains two zeros and it should not be processed.

Sample Input                             Output for Sample Input

3 9
1 7
24 24
15 76
24 56
24 143
23 81
7 38
0 0
 
20/27
0
1
11703055/78364164096
789532654692658645/789730223053602816
25/4738381338321616896
1/2

55/46656



题意:给定n个骰子和一个x,要求出用这些骰子投出大于等于x的概率。要求最简。

思路:先用dp打表出用n个骰子掷出x的种数,然后就是用gcd约分。

代码:

#include <stdio.h>
#include <string.h>
const int N = 30;
const int X = 155;
long long n, x;
long long dp[N][X], zi, mu;

long long gcd(long long a, long long b) {
	if (!b) return a;
	return gcd(b, a % b); 
}
int main() {
	for (int i = 1; i <= 24; i ++)
		for (int j = 1; j <= 150; j ++) {
			if (i == 1 && j <= 6)
				dp[i][j] = 1;
			for (int k = 1; k <= 6; k ++) {
				if (j >= k)
					dp[i][j] += dp[i - 1][j - k];
			}
		}
	while (~scanf("%lld%lld", &n, &x) && n || x) {
		mu = zi = 0;
		for (int i = n; i <= n * 6; i ++) {
			mu += dp[n][i];
			if (i >= x)
				zi += dp[n][i];
		}
		long long num = gcd(mu, zi);
		if (zi == mu)
			printf("1\n");
		else if (zi == 0)
			printf("0\n");
		else
			printf("%lld/%lld\n", zi / num, mu / num);
	}
	return 0;
}


内容概要:本文深入探讨了Kotlin语言在函数式编程和跨平台开发方面的特性和优势,结合详细的代码案例,展示了Kotlin的核心技巧和应用场景。文章首先介绍了高阶函数和Lambda表达式的使用,解释了它们如何简化集合操作和回调函数处理。接着,详细讲解了Kotlin Multiplatform(KMP)的实现方式,包括共享模块的创建和平台特定模块的配置,展示了如何通过共享业务逻辑代码提高开发效率。最后,文章总结了Kotlin在Android开发、跨平台移动开发、后端开发和Web开发中的应用场景,并展望了其未来发展趋势,指出Kotlin将继续在函数式编程和跨平台开发领域不断完善和发展。; 适合人群:对函数式编程和跨平台开发感兴趣的开发者,尤其是有一定编程基础的Kotlin初学者和中级开发者。; 使用场景及目标:①理解Kotlin中高阶函数和Lambda表达式的使用方法及其在实际开发中的应用场景;②掌握Kotlin Multiplatform的实现方式,能够在多个平台上共享业务逻辑代码,提高开发效率;③了解Kotlin在不同开发领域的应用场景,为选择合适的技术栈提供参考。; 其他说明:本文不仅提供了理论知识,还结合了大量代码案例,帮助读者更好地理解和实践Kotlin的函数式编程特性和跨平台开发能力。建议读者在学习过程中动手实践代码案例,以加深理解和掌握。
内容概要:本文深入探讨了利用历史速度命令(HVC)增强仿射编队机动控制性能的方法。论文提出了HVC在仿射编队控制中的潜在价值,通过全面评估HVC对系统的影响,提出了易于测试的稳定性条件,并给出了延迟参数与跟踪误差关系的显式不等式。研究为两轮差动机器人(TWDRs)群提供了系统的协调编队机动控制方案,并通过9台TWDRs的仿真和实验验证了稳定性和综合性能改进。此外,文中还提供了详细的Python代码实现,涵盖仿射编队控制类、HVC增强、稳定性条件检查以及仿真实验。代码不仅实现了论文的核心思想,还扩展了邻居历史信息利用、动态拓扑优化和自适应控制等性能提升策略,更全面地反映了群体智能协作和性能优化思想。 适用人群:具备一定编程基础,对群体智能、机器人编队控制、时滞系统稳定性分析感兴趣的科研人员和工程师。 使用场景及目标:①理解HVC在仿射编队控制中的应用及其对系统性能的提升;②掌握仿射编队控制的具体实现方法,包括控制器设计、稳定性分析和仿真实验;③学习如何通过引入历史信息(如HVC)来优化群体智能系统的性能;④探索中性型时滞系统的稳定性条件及其在实际系统中的应用。 其他说明:此资源不仅提供了理论分析,还包括完整的Python代码实现,帮助读者从理论到实践全面掌握仿射编队控制技术。代码结构清晰,涵盖了从初始化配置、控制律设计到性能评估的各个环节,并提供了丰富的可视化工具,便于理解和分析系统性能。通过阅读和实践,读者可以深入了解HVC增强仿射编队控制的工作原理及其实际应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值