讲到Z-Stack协议栈函数,我们第一反应就是OSAL操作系统。
OSAL(Operation system abstractic layer)"操作系统抽象层",这个名词与Z-stack有着怎样的联系呢?在Z-stack协议栈中扮演着怎样的角色呢?带着这些问题,我们可以从宏观入手,一步步得到答案。
下图是ZigBee协议的结构图:
从这幅图中,我们并没有看到OSAL的踪迹,当然,我们都知道,Z-Stack与ZigBee之间并不能完全划等号。Z-Stack是ZigBee的具体实现,所以存在于Z-Stack中的OSAL并不一定出现在ZigBee中。但是,我们可以在ZigBee中找到些许OSAL的踪影。
在ZigBee协议中,协议本身已经定义了大部分内容。在基于ZigBee协议的应用开发中,用户只需要实现应用程序框架即可。从上图可以看出应用程序框架中包含了最多240个应用程序对象。如果我们把一个应用程序对象看做为一个任务的话,那么应用程序框架将包含一个支持多任务的资源分配机制。于是OSAL便有了存在的必要性,它正是Z-Stack为了实现这样一个机制而存在的。
OSAL就是以实现多任务为核心的系统资源管理机制。所以OSAL与标准的操作系统还是有很大的区别的。简单而言,OSAL实现了类似操作系统的某些功能,但并不能称之为真正意义上的操作系统。
TI的Z-Stack装载在一个基于IAR开发环境的工程里。Z-Stack根据IEEE 802.15.4和ZigBee标准分为以下几层:API(Application Programming Interface),HAL(Hardware Abstract Layer),MAC(Media Access Control),NWK(Zigbee Network Layer),OSAL(Operating System AbstractSystem),Security,Service,ZDO(Zigbee Device Objects)等。使用IAR打开工程文件SampleApp.eww后,即可查看到整个协议栈从HAL层到APP层的文件夹分布。该协议栈可以实现复杂的网络链接,在协调器节点中实现对路由表和绑定表的非易失性存储,因此网络具有一定的记忆功能
Z-Stack采用操作系统的思想来构建,采用事件轮循机制,当各层初始化之后,系统进入低功耗模式,当事件发生时,唤醒系统,开始进入中断处理事件,结束后继续进入低功耗模式。如果同时有几个事件发生,判断优先级,逐次处理事件。这种软件构架可以极大地降级系统的功耗
整个Z-stack的主要工作流程,大致分为系统启动,驱动初始化,OSAL初始化和启动,进入任务轮循几个阶段,下面将逐一详细分析。
图 Z-Stack系统运行流程图
系统上电后,通过执行ZMain文件夹中ZMain.c的ZSEG int main()函数实现硬件的初始化,其中包括关总中断osal_int_disable(INTS_ALL)、初始化板上硬件设置HAL_BOARD_INIT()、初始化I/O口InitBoard(OB_COLD)、初始化HAL层驱动HalDriverInit()、初始化非易失性存储器sal_nv_init(NULL)、初始化MAC层ZMacInit()、分配64位地址zmain_ext_addr()、初始化操作系统osal_init_system()等。
硬件初始化需要根据HAL文件夹中的hal_board_cfg.h文件配置寄存器,如果实验板与TI官方的I/O口配置略有不同,则应根据原理图对其中状态指示LED2重新设置LED2控制引脚口、通用I/O口方向和控制函数定义等
当顺利完成上述初始化时,执行osal_start_system()函数开始运行OSAL系统。该任务调度函数按照优先级检测各个任务是否就绪。如果存在就绪的任务则调用tasksArr[]中相对应的任务处理函数去处理该事件,直到执行完所有就绪的任务。如果任务列表中没有就绪的任务,则可以使处理器进入睡眠状态实现低功耗。程序流程如图3-13所示。osal_start_system()一旦执行,则不再返回Main()函数。