Stacks of Flapjacks 翻煎饼-UVA120 白书第五章

本文介绍了一种有趣的排序问题——煎饼排序。通过一系列翻转操作将不同直径的煎饼按大小顺序排列。文章详细解释了如何实现煎饼排序,并提供了一个具体的C++实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



 Stacks of Flapjacks 

Background

Stacks and Queues are often considered the bread and butter of data structures and find use in architecture, parsing, operating systems, and discrete event simulation. Stacks are also important in the theory of formal languages.

This problem involves both butter and sustenance in the form of pancakes rather than bread in addition to a finicky server who flips pancakes according to a unique, but complete set of rules.

The Problem

Given a stack of pancakes, you are to write a program that indicates how the stack can be sorted so that the largest pancake is on the bottom and the smallest pancake is on the top. The size of a pancake is given by the pancake's diameter. All pancakes in a stack have different diameters.

Sorting a stack is done by a sequence of pancake ``flips''. A flip consists of inserting a spatula between two pancakes in a stack and flipping (reversing) the pancakes on the spatula (reversing the sub-stack). A flip is specified by giving the position of the pancake on the bottom of the sub-stack to be flipped (relative to the whole stack). The pancake on the bottom of the whole stack has position 1 and the pancake on the top of a stack of n pancakes has position n.

A stack is specified by giving the diameter of each pancake in the stack in the order in which the pancakes appear.

For example, consider the three stacks of pancakes below (in which pancake 8 is the top-most pancake of the left stack):

         8           7           2
         4           6           5
         6           4           8
         7           8           4
         5           5           6
         2           2           7
The stack on the left can be transformed to the stack in the middle via flip(3). The middle stack can be transformed into the right stack via the command flip(1).

The Input

The input consists of a sequence of stacks of pancakes. Each stack will consist of between 1 and 30 pancakes and each pancake will have an integer diameter between 1 and 100. The input is terminated by end-of-file. Each stack is given as a single line of input with the top pancake on a stack appearing first on a line, the bottom pancake appearing last, and all pancakes separated by a space.

The Output

For each stack of pancakes, the output should echo the original stack on one line, followed by some sequence of flips that results in the stack of pancakes being sorted so that the largest diameter pancake is on the bottom and the smallest on top. For each stack the sequence of flips should be terminated by a 0 (indicating no more flips necessary). Once a stack is sorted, no more flips should be made.

Sample Input

1 2 3 4 5
5 4 3 2 1
5 1 2 3 4

Sample Output

1 2 3 4 5
0
5 4 3 2 1
1 0
5 1 2 3 4
1 2 0

思路:先检查这些煎饼是否顺序排好,如果没有排好的话,找出当前位置下的最大的煎饼,翻转它使他翻到最上面,再从下面翻转一次,可以使他落到正确位置。。

#include<iostream>
#include<algorithm>
#include<string>
#include<cstring>

using namespace std;

int cake[40];

bool is_sort(int *arry,int len)
{
    int i;
    for(i=2;i<=len;i++)
    {
        if(arry[i]<arry[i-1])
            return false;
    }
    return true;
}

int max_c(int *arry,int len)
{
    int i,j=1,max=0;
    for(i=1;i<=len;i++)
    {
        if(arry[i]>max)
        {
            max=arry[i];
            j=i;
        }
    }
    return j;
}

void rev(int *arry,int len1,int t)
{
    int i;
    for(i=1;i<t/2+1;i++)
    {
        swap(arry[i],arry[t-i+1]);
    }
}

int main()
{
    string str;
    while(getline(cin,str))
    {
        memset(cake,0,sizeof(cake));
        int r=0,k=0,i;
        for(i=0;i<str.size();i++)
        {
            if(str[i]!=' ')
            {
                if(i==(str.size()-1))
                {
                    cake[++k]=r*10+str[i]-'0';
                }
                else
                {
                    r=r*10+str[i]-'0';
                }
            }
            else
            {
                cake[++k]=r;
                r=0;
            }
        }
        cout<<str<<endl;
         int len=k;
        while(!is_sort(cake,len))
        {
            i=max_c(cake,k);
            if(i==k)
            {
                k--;
                continue;
            }
            if(i!=1)
            {
                rev(cake,len,i);
                cout<<len-i+1<<" ";
            }
            cout<<len-k+1<<" ";
            rev(cake,len,k);
            k--;
        }
        cout<<"0"<<endl;
    }
    return 0;
}


1. 用户与权限管理模块 角色管理: 学生:查看实验室信息、预约设备、提交耗材申请、参与安全考核 教师:管理课题组预约、审批学生耗材申请、查看本课题组使用记录 管理员:设备全生命周期管理、审核预约、耗材采购与分发、安全检查 用户操作: 登录认证:统一身份认证(对接学号 / 工号系统,模拟实现),支持密码重置 信息管理:学生 / 教师维护个人信息(联系方式、所属院系),管理员管理所有用户 权限控制:不同角色仅可见对应功能(如学生不可删除设备信息) 2. 实验室与设备管理模块 实验室信息管理: 基础信息:实验室编号、名称、位置、容纳人数、开放时间、负责人 功能分类:按学科(计算机实验室 / 电子实验室 / 化学实验室)标记,关联可开展实验类型 状态展示:实时显示当前使用人数、设备运行状态(正常 / 故障) 设备管理: 设备档案:名称、型号、规格、购置日期、单价、生产厂家、存放位置、责任人 全生命周期管理: 入库登记:管理员录入新设备信息,生成唯一资产编号 维护记录:记录维修、校准、保养信息(时间、内容、执行人) 报废处理:登记报废原因、时间,更新设备状态为 "已报废" 设备查询:支持按名称、型号、状态多条件检索,显示设备当前可用情况 3. 预约与使用模块 预约管理: 预约规则:学生可预约未来 7 天内的设备 / 实验室,单次最长 4 小时(可设置) 预约流程:选择实验室→选择设备→选择时间段→提交申请(需填写实验目的) 审核机制:普通实验自动通过,高危实验(如化学实验)需教师审核 使用记录: 签到 / 签退:到达实验室后扫码签到,离开时签退,系统自动记录实际使用时长 使用登记:填写实验内容、设备运行情况(正常 / 异常),异常情况需详细描述 违规管理:迟到 15 分钟自动取消预约,多次违规限制预约权限 4. 耗材与安全管理模块 耗材管理: 耗材档案:名称、规格、数量、存放位置、
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值