CF 723A The New Year: Meeting Friends

三名朋友在直线Ox上的家相聚庆祝新年,需在某点会合。给定每个朋友的坐标,求他们相聚的最小总距离。输入包含三个不同的整数坐标,输出一个整数表示最小总距离。示例表明应按坐标排序,选择中间点作为会合点,以达到最小总距离。

题目链接:http://codeforces.com/problemset/problem/723/A
A. The New Year: Meeting Friends
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
There are three friend living on the straight line Ox in Lineland. The first friend lives at the point x1, the second friend lives at the point x2, and the third friend lives at the point x3. They plan to celebrate the New Year together, so they need to meet at one point. What is the minimum total distance they have to travel in order to meet at some point and celebrate the New Year?

It’s guaranteed that the optimal answer is always integer.

Input
The first line of the input contains three distinct integers x1, x2 and x3 (1 ≤ x1, x2, x3 ≤ 100) — the coordinates of the houses of the first, the second and the third friends respectively.

Output
Print one integer — the minimum total distance the friends need to travel in order to meet together.

Examples
inputCopy
7 1 4
outputCopy
6
inputCopy
30 20 10
outputCopy
20
Note
In the first sample, friends should meet at the point 4. Thus, the first friend has to travel the distance of 3 (from the point 7 to the point 4), the second friend also has to travel the distance of 3 (from the point 1 to the point 4), while the third friend should not go anywhere because he lives at the point 4.

题目翻译:三个人的家住在一条直线上,过年了他们定在一个点碰面,求他们三个人一共要走的最短距离

解题思路:将三个数按照顺序从小到大排好序,比如 1 4 7,会面点肯定在1-7内最短,对1和7来说,两个人走的总距离是7-1,对于4来说,最好他不走,三个人总距离最短。

#include<iostream>
#include<cstdlib>
#include<algorithm>
#define ll long long
using namespace std;
int main()
{
	int num[3];
	cin >> num[0] >> num[1] >>num[2];
	sort(num,num+3);
	cout<<num[2]-num[0]<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值