Switch Game
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 8850 Accepted Submission(s): 5286
Problem Description
There are many lamps in a line. All of them are off at first. A series of operations are carried out on these lamps. On the i-th operation, the lamps whose numbers are the multiple of i change the condition ( on to off and off to on ).
Input
Each test case contains only a number n ( 0< n<= 10^5) in a line.
Output
Output the condition of the n-th lamp after infinity operations ( 0 - off, 1 - on ).
Sample Input
1 5
Sample Output
1 0Consider the second test case: The initial condition : 0 0 0 0 0 … After the first operation : 1 1 1 1 1 … After the second operation : 1 0 1 0 1 … After the third operation : 1 0 0 0 1 … After the fourth operation : 1 0 0 1 1 … After the fifth operation : 1 0 0 1 0 … The later operations cannot change the condition of the fifth lamp any more. So the answer is 0.Hinthint
题意:就是初始时有很多灯的状态都是关闭的,
然后第n次改变处于n的倍数的位置的灯的状态,
即:由0到1,由1到0;
思路:以下是我的代码,直接循环,当j大于n时,
即再也无法改变其状态,所以可以循环到n结束。
但是还可以找规律:只有处于n*n状态的灯才会是亮的。
#include <iostream>
#include <cstring>
#include <cstdio>
#include<cmath>
#include <algorithm>
using namespace std;
int main()
{
int n,i,j,a[100010];
while(~scanf("%d",&n))
{
memset(a,0,sizeof(a));
int j=1;
while(j<=n)
{
for(i=j;i<=n+2;i+=j)
a[i]=!a[i];
j++;
}
//for(i=1;i<=n;i++)
//cout<<a[i]<<' ';
printf("%d\n",a[n]);
}
return 0;
}