hdu 2053 Switch Game

本文探讨了一系列操作对线性排列灯泡状态的最终影响,通过分析特定操作序列,揭示了灯泡状态的周期性和规律性,特别是对于第五个灯泡状态的详细解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



Switch Game

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8850    Accepted Submission(s): 5286


Problem Description
There are many lamps in a line. All of them are off at first. A series of operations are carried out on these lamps. On the i-th operation, the lamps whose numbers are the multiple of i change the condition ( on to off and off to on ).
 

Input
Each test case contains only a number n ( 0< n<= 10^5) in a line.
 

Output
Output the condition of the n-th lamp after infinity operations ( 0 - off, 1 - on ).
 

Sample Input
1 5
 

Sample Output
1 0
Hint
hint
Consider the second test case: The initial condition : 0 0 0 0 0 … After the first operation : 1 1 1 1 1 … After the second operation : 1 0 1 0 1 … After the third operation : 1 0 0 0 1 … After the fourth operation : 1 0 0 1 1 … After the fifth operation : 1 0 0 1 0 … The later operations cannot change the condition of the fifth lamp any more. So the answer is 0.
 

题意:就是初始时有很多灯的状态都是关闭的,

然后第n次改变处于n的倍数的位置的灯的状态,

即:由0到1,由1到0;

思路:以下是我的代码,直接循环,当j大于n时,
即再也无法改变其状态,所以可以循环到n结束。
但是还可以找规律:只有处于n*n状态的灯才会是亮的。
#include <iostream>
#include <cstring>
#include <cstdio>
#include<cmath>
#include <algorithm>
using namespace std;


int main()
{
 int n,i,j,a[100010];
 while(~scanf("%d",&n))
 {
    memset(a,0,sizeof(a));
     int j=1;
   while(j<=n)
   {
     for(i=j;i<=n+2;i+=j)
        a[i]=!a[i];
      j++;
   }
  //for(i=1;i<=n;i++)
    //cout<<a[i]<<' ';
    printf("%d\n",a[n]);
   }

    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值