java线程池详解


/*线程池种类
 * 
1.newSingleThreadExecutor
      创建一个单线程的线程池。这个线程池只有一个线程在工作,也就是相当于单线程串行执行所有任务。
      如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它。此线程池保证所有任务的执行顺序按照任务的提交顺序执行。
2.newFixedThreadPool
     创建固定大小的线程池。每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小。
     线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。
3. newCachedThreadPool
    创建一个可缓存的线程池。如果线程池的大小超过了处理任务所需要的线程,
   那么就会回收部分空闲(60秒不执行任务)的线程,当任务数增加时,此线程池又可以智能的添加新线程来处理任务。
   此线程池不会对线程池大小做限制,线程池大小完全依赖于操作系统(或者说JVM)能够创建的最大线程大小。
4.newScheduledThreadPool
  创建一个大小无限的线程池。此线程池支持定时以及周期性执行任务的需求。*/




/* 线程池关闭方法:
 *
 *  shutdown或shutdownNow方法来关闭线程池,
 * 它们的原理是遍历线程池中的工作线程,然后逐个调用线程的interrupt方法来中断线程,
 * 所以无法响应中断的任务可能永远无法终止。但是它们存在一定的区别,shutdownNow首先将线程池的状态设置成STOP,
 * 然后尝试停止所有的正在执行或暂停任务的线程,并返回等待执行任务的列表,而shutdown只是将线程池的状态设置成SHUTDOWN状态,
 * 然后中断所有没有正在执行任务的线程。只要调用了这两个关闭方法的其中一个,isShutdown方法就会返回true。
 * 当所有的任务都已关闭后,才表示线程池关闭成功,
 * 这时调用isTerminaed方法会返回true。至于我们应该调用哪一种方法来关闭线程池,应该由提交到线程池的任务特性决定,通常调用shutdown来关闭线程池,如果任务不一定要执行完,则可以调用shutdownNow。
 */


/*三种类型的queue
 *
所有BlockingQueue 都可用于传输和保持提交的任务。可以使用此队列与池大小进行交互:
如果运行的线程少于 corePoolSize,则 Executor始终首选添加新的线程,而不进行排队。(如果当前运行的线程小于corePoolSize,则任务根本不会存放,添加到queue中,而是直接抄家伙(thread)开始运行)
如果运行的线程等于或多于 corePoolSize,则 Executor始终首选将请求加入队列,而不添加新的线程。
如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。
queue上的三种类型。
 
排队有三种通用策略:
直接提交。工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。直接提交通常要求无界 maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
无界队列。使用无界队列(例如,不具有预定义容量的 LinkedBlockingQueue)将导致在所有 corePoolSize 线程都忙时新任务在队列中等待。这样,创建的线程就不会超过 corePoolSize。(因此,maximumPoolSize的值也就无效了。)当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
有界队列。当使用有限的 maximumPoolSizes时,有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。  
BlockingQueue的选择。




例子一:使用直接提交策略,也即SynchronousQueue。
首先SynchronousQueue是无界的,也就是说他存数任务的能力是没有限制的,但是由于该Queue本身的特性,在某次添加元素后必须等待其他线程取走后才能继续添加。在这里不是核心线程便是新创建的线程,但是我们试想一样下,下面的场景。
我们使用一下参数构造ThreadPoolExecutor:
new ThreadPoolExecutor(
  2, 3, 30, TimeUnit.SECONDS,
  new SynchronousQueue<Runnable>(),
  new RecorderThreadFactory("CookieRecorderPool"),
  new ThreadPoolExecutor.CallerRunsPolicy());
 当核心线程已经有2个正在运行.
此时继续来了一个任务(A),根据前面介绍的“如果运行的线程等于或多于 corePoolSize,则 Executor始终首选将请求加入队列,而不添加新的线程。”,所以A被添加到queue中。
又来了一个任务(B),且核心2个线程还没有忙完,OK,接下来首先尝试1中描述,但是由于使用的SynchronousQueue,所以一定无法加入进去。
此时便满足了上面提到的“如果无法将请求加入队列,则创建新的线程,除非创建此线程超出maximumPoolSize,在这种情况下,任务将被拒绝。”,所以必然会新建一个线程来运行这个任务。
暂时还可以,但是如果这三个任务都还没完成,连续来了两个任务,第一个添加入queue中,后一个呢?queue中无法插入,而线程数达到了maximumPoolSize,所以只好执行异常策略了。
所以在使用SynchronousQueue通常要求maximumPoolSize是无界的,这样就可以避免上述情况发生(如果希望限制就直接使用有界队列)。对于使用SynchronousQueue的作用jdk中写的很清楚:此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。
什么意思?如果你的任务A1,A2有内部关联,A1需要先运行,那么先提交A1,再提交A2,当使用SynchronousQueue我们可以保证,A1必定先被执行,在A1么有被执行前,A2不可能添加入queue中。




例子二:使用无界队列策略,即LinkedBlockingQueue
这个就拿newFixedThreadPool来说,根据前文提到的规则:
如果运行的线程少于 corePoolSize,则 Executor 始终首选添加新的线程,而不进行排队。那么当任务继续增加,会发生什么呢?
如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列,而不添加新的线程。OK,此时任务变加入队列之中了,那什么时候才会添加新线程呢?
如果无法将请求加入队列,则创建新的线程,除非创建此线程超出 maximumPoolSize,在这种情况下,任务将被拒绝。这里就很有意思了,可能会出现无法加入队列吗?不像SynchronousQueue那样有其自身的特点,对于无界队列来说,总是可以加入的(资源耗尽,当然另当别论)。换句说,永远也不会触发产生新的线程!corePoolSize大小的线程数会一直运行,忙完当前的,就从队列中拿任务开始运行。所以要防止任务疯长,比如任务运行的实行比较长,而添加任务的速度远远超过处理任务的时间,而且还不断增加,不一会儿就爆了。
例子三:有界队列,使用ArrayBlockingQueue。
这个是最为复杂的使用,所以JDK不推荐使用也有些道理。与上面的相比,最大的特点便是可以防止资源耗尽的情况发生。
举例来说,请看如下构造方法:
new ThreadPoolExecutor(
    2, 4, 30, TimeUnit.SECONDS,
    new ArrayBlockingQueue<Runnable>(2),
    new RecorderThreadFactory("CookieRecorderPool"),
    new ThreadPoolExecutor.CallerRunsPolicy());
假设,所有的任务都永远无法执行完。
对于首先来的A,B来说直接运行,接下来,如果来了C,D,他们会被放到queue中,如果接下来再来E,F,则增加线程运行E,F。但是如果再来任务,队列无法再接受了,线程数也到达最大的限制了,所以就会使用拒绝策略来处理。




keepAliveTime
jdk中的解释是:当线程数大于核心时,此为终止前多余的空闲线程等待新任务的最长时间。
有点拗口,其实这个不难理解,在使用了“池”的应用中,大多都有类似的参数需要配置。比如数据库连接池,DBCP中的maxIdle,minIdle参数。
什么意思?接着上面的解释,后来向老板派来的工人始终是“借来的”,俗话说“有借就有还”,但这里的问题就是什么时候还了,如果借来的工人刚完成一个任务就还回去,后来发现任务还有,那岂不是又要去借?这一来一往,老板肯定头也大死了。
合理的策略:既然借了,那就多借一会儿。直到“某一段”时间后,发现再也用不到这些工人时,便可以还回去了。这里的某一段时间便是keepAliveTime的含义,TimeUnit为keepAliveTime值的度量。
 
RejectedExecutionHandler
另一种情况便是,即使向老板借了工人,但是任务还是继续过来,还是忙不过来,这时整个队伍只好拒绝接受了。
RejectedExecutionHandler接口提供了对于拒绝任务的处理的自定方法的机会。在ThreadPoolExecutor中已经默认包含了4中策略,因为源码非常简单,这里直接贴出来。


//
CallerRunsPolicy:线程调用运行该任务的 execute 本身。此策略提供简单的反馈控制机制,能够减缓新任务的提交速度。


public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
           if (!e.isShutdown()) {
               r.run();
           }
       }
这个策略显然不想放弃执行任务。但是由于池中已经没有任何资源了,那么就直接使用调用该execute的线程本身来执行。


//
AbortPolicy:处理程序遭到拒绝将抛出运行时RejectedExecutionException
 
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
           throw new RejectedExecutionException();
       }
 这种策略直接抛出异常,丢弃任务。
 
// 
DiscardPolicy:不能执行的任务将被删除
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
       }
 这种策略和AbortPolicy几乎一样,也是丢弃任务,只不过他不抛出异常。
 
 //
DiscardOldestPolicy:如果执行程序尚未关闭,则位于工作队列头部的任务将被删除,然后重试执行程序(如果再次失败,则重复此过程)
  
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
           if (!e.isShutdown()) {
               e.getQueue().poll();
               e.execute(r);
           }
       }
       
该策略就稍微复杂一些,在pool没有关闭的前提下首先丢掉缓存在队列中的最早的任务,然后重新尝试运行该任务。这个策略需要适当小心。
设想:如果其他线程都还在运行,那么新来任务踢掉旧任务,缓存在queue中,再来一个任务又会踢掉queue中最老任务。
总结:
keepAliveTime和maximumPoolSize及BlockingQueue的类型均有关系。如果BlockingQueue是无界的,那么永远不会触发maximumPoolSize,自然keepAliveTime也就没有了意义。
反之,如果核心数较小,有界BlockingQueue数值又较小,同时keepAliveTime又设的很小,如果任务频繁,那么系统就会频繁的申请回收线程。
public static ExecutorService newFixedThreadPool(int nThreads) {
       return new ThreadPoolExecutor(nThreads, nThreads,
                                     0L, TimeUnit.MILLISECONDS,
                                     new LinkedBlockingQueue<Runnable>());
   }*/


public class Main {
	static LinkedBlockingQueue<Runnable> q=new LinkedBlockingQueue<Runnable>();//直接提交
	static ArrayBlockingQueue<Runnable> aq=new ArrayBlockingQueue<Runnable>(10);//有界队列
	static SynchronousQueue<Runnable> sq=new SynchronousQueue<Runnable>();//无界队列
	public static void main(String[] args) {
		
		/*//获得CPU的个数
		int cpuNum=Runtime.getRuntime().availableProcessors();
		System.out.println(cpuNum);//4
*/		
		final ThreadPoolExecutor myExecutorService=createMyThreadPool();
		Thread thread1=new MyThread();
		Thread thread2=new MyThread();
		Thread thread3=new MyThread();
		Thread thread4=new MyThread();
		Thread thread5=new MyThread();
		//执行
		myExecutorService.execute(thread1);
		myExecutorService.execute(thread2);
		myExecutorService.execute(thread3);
		myExecutorService.execute(thread4);
		myExecutorService.execute(thread5);
		System.out.println(q.size()+"");//2
		//关闭线程池
		myExecutorService.shutdown();
	}
	
	/**参数分别为:
	  基本线程池数量(正在工作和空闲的工作线程数量和)、
	  线程池的最大数量、线程池的空闲工作线程的存活时间、
	 线程活动保持时间单位、
	 任务队列、
	 当整个线程池已满,并且继续加入线程时的处理*/
	
	//自定义线程池
	
	public static ThreadPoolExecutor createMyThreadPool(){
		
		
		return new ThreadPoolExecutor(3, 10
				, 0, TimeUnit.SECONDS, q
				, new RejectedExecutionHandler(){

					@Override
					public void rejectedExecution(Runnable r,ThreadPoolExecutor executor) {
							
						System.out.println("线程池已满");
					}
		});
	}
	
	public static class MyThread extends Thread{

		@Override
		public void run() {
			
			System.out.println(""+"正在执行的任务:"+Thread.currentThread().getName());
			
		}
		
	} 

}



### Java 线程池详解 #### 创建线程池的方式 Java 提供了几种创建线程池的方法,最常用的是通过 `Executors` 工厂类来获取预配置好的线程池实例。然而,在实际项目中更推荐使用 `ThreadPoolExecutor` 构造器来自定义参数,以获得更好的灵活性和性能控制[^1]。 ```java // 不推荐的做法:固定大小的缓存线程池可能导致资源浪费或耗尽 ExecutorService cachedPool = Executors.newCachedThreadPool(); // 推荐做法:自定义 ThreadPoolExecutor 参数设置 ThreadFactory namedThreadFactory = new ThreadFactoryBuilder().setNameFormat("demo-pool-%d").build(); ThreadPoolExecutor executor = new ThreadPoolExecutor( corePoolSize, maximumPoolSize, keepAliveTime, TimeUnit.SECONDS, workQueue, namedThreadFactory); ``` #### 关键组件说明 - **核心线程数 (`corePoolSize`)** 定义了即使处于空闲状态也会被保留在线程池中的最小线程数量。 - **最大线程数 (`maximumPoolSize`)** 设置允许的最大活动线程数目;当现有任务队列已满而又有新的提交任务时才会触发扩容至该上限。 - **存活时间 (`keepAliveTime`)** 非核心线程闲置后的自动回收等待周期长度。 - **阻塞队列 (`workQueue`)** 存储待处理的任务对象集合,不同类型的队列会影响吞吐量表现及拒绝策略行为。 - **线程工厂 (`threadFactory`)** 负责生产新线程实体,默认实现较为简单,通常建议开发者根据应用场景定制化命名规则以便于调试跟踪。 #### 常见错误与优化技巧 忽视对线程池内部运行状况监控是常见的失误之一。应当定期审查并调整相关参数,确保其适应当前负载需求变化趋势。另外需要注意捕获未预见异常情形下的恢复机制设计,防止因个别失败案例影响整体服务稳定性[^2]。 #### 实践指南 对于Web容器如Tomcat而言,内置有经过优化过的专用线程管理模块用于支撑高并发请求场景下高效运作的要求。尽管如此,了解基础概念仍然有助于更好地理解框架底层运作机理,并能在必要时候做出针对性调优措施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值