参考了别人的代码,加上了一些注释。
懂得了将一个类似与棋盘的东西转化成用邻接矩阵表示的图,然后再通过最短路相关算法求最短路。
/************************************************************************
poj 1178 (IOI 1998) - dp : floyd
枚举64个终点 * 枚举64个接国王点 * 枚举64只来接的骑士
总复杂度O(64*64*64)
************************************************************************/
#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
using namespace std;
#define MAX 8
const int INF = ( 1 << 20 );
int dirKing[8][2] = {{1, 0}, { -1, 0}, {0, 1}, {0, -1}, {1, 1}, { -1, -1}, {1, -1}, { -1, 1}};
int dirKnight[8][2] = {{ -2, -1}, { -2, 1}, {2, -1}, {2, 1}, { -1, -2}, {1, -2}, { -1, 2}, {1, 2}};
char str[MAX*MAX * 2 + 5];
int king[MAX*MAX][MAX*MAX], knight[MAX*MAX][MAX*MAX];
int step[MAX*MAX], num;
inline int min ( int a, int b )
{
return a < b ? a : b;
}
//建立邻接矩阵
void init()
{
for ( int i = 0; i < MAX * MAX; ++i )
for ( int j = 0; j < MAX * MAX; ++j )
king[i][j] = knight[i][j] = ( i == j ? 0 : INF );
for ( int i = 0; i < MAX * MAX; ++i )
{
int x = i / 8;
int y = i % 8;
for ( int j = 0; j < 8; ++j )
{
int xx = x + dirKing[j][0];
int yy = y + dirKing[j][1];
if ( xx >= 0 && xx < MAX && yy >= 0 && yy < MAX )
king[i][8 * xx + yy] = 1;
}
for ( int j = 0; j < 8; ++j )
{
int xx = x + dirKnight[j][0];
int yy = y + dirKnight[j][1];
if ( xx >= 0 && xx < MAX && yy >= 0 && yy < MAX )
knight[i][8 * xx + yy] = 1;
}
}
}
void floyd ( int a[][MAX*MAX] )
{
for ( int k = 0; k < MAX * MAX; ++k )
{
for ( int i = 0; i < MAX * MAX; ++i )
{
for ( int j = 0; j < MAX * MAX; ++j )
{
if ( a[i][j] > a[i][k] + a[k][j] )
a[i][j] = a[i][k] + a[k][j];
}
}
}
}
int main()
{
freopen("in.txt","r",stdin);
init();
floyd ( king );
floyd ( knight );
while ( scanf ( "%s", str ) != EOF )
{
int start = ( str[0] - 'A' ) + ( str[1] - '1' ) * 8;
int num = ( strlen ( str ) - 2 ) / 2;
if ( num == 0 )
{
printf ( "0\n" );
continue;
}
for ( int i = 0, j = 2; i < num; ++i, j += 2 )
step[i] = ( str[j] - 'A' ) + ( str[j + 1] - '1' ) * 8;
int result = INF;
int t1, t2;
int sum;
//枚举64个终点
for ( int i = 0; i < MAX * MAX; ++i )
{
//sum:所有骑士到达终点的总和
sum = 0;
for ( int k = 0; k < num; ++k )
sum += knight[ step[k] ][i];
//枚举64个接国王的点
for ( int j = 0; j < MAX * MAX; ++j )
{
t1 = king[start][j];
t2 = INF;
//找离国王最近的点
for ( int kk = 0; kk < num; ++kk )
{
t2 = min ( t2, knight[ step[kk] ][j] + knight[j][i] - knight[ step[kk] ][i] ); // 骑士从起始点到达j点接国王, 骑士和国王一起到达枚举的终点, 其中要减去sum已经加上的即可.
}
result = min ( result, sum + t1 + t2 );
}
}
printf ( "%d\n", result );
}
return 0;
}