题目描述
小青蛙有一天不小心落入了一个地下迷宫,小青蛙希望用自己仅剩的体力值P跳出这个地下迷宫。为了让问题简单,假设这是一个n*m的格子迷宫,迷宫每个位置为0或者1,0代表这个位置有障碍物,小青蛙达到不了这个位置;1代表小青蛙可以达到的位置。小青蛙初始在(0,0)位置,地下迷宫的出口在(0,m-1)(保证这两个位置都是1,并且保证一定有起点到终点可达的路径),小青蛙在迷宫中水平移动一个单位距离需要消耗1点体力值,向上爬一个单位距离需要消耗3个单位的体力值,向下移动不消耗体力值,当小青蛙的体力值等于0的时候还没有到达出口,小青蛙将无法逃离迷宫。现在需要你帮助小青蛙计算出能否用仅剩的体力值跳出迷宫(即达到(0,m-1)位置)。
输入描述:
输入包括n+1行:
第一行为三个整数n,m(3 <= m,n <= 10),P(1 <= P <= 100)
接下来的n行:
每行m个0或者1,以空格分隔
输出描述:
如果能逃离迷宫,则输出一行体力消耗最小的路径,输出格式见样例所示;如果不能逃离迷宫,则输出”Can not escape!”。 测试数据保证答案唯一
示例1
输入
4 4 10 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 1
输出
[0,0],[1,0],[1,1],[2,1],[2,2],[2,3],[1,3],[0,3]
//DFS,通过体力值来确定最省力的路径
#include<iostream>
#include<vector>
using namespace std;
struct label
{
int x, y;
label(int _x, int _y) :x(_x), y(_y) {}
label() {}
};
int n, m, p;
int final_p = -1000;
int mp[10][10] = { 0 };
int Next[4][2] = { { 0,-1 },{ 0,1 },{ -1,0 },{ 1,0 } };
int Cost[4] = { -1,-1,-3,0 };
vector<label> ans;
vector<label> now;
void dfs(int x, int y, int p_rest)
{
now.push_back(label(x, y));
mp[x][y] = 2;
if (x == 0 && y == m - 1)
{
if (p_rest>final_p&&p_rest >= 0)
{
final_p = p_rest;
ans = now;
}
now.pop_back();
mp[x][y] = 1;
return;
}
for (int i = 0; i<4; ++i)
{
int nx = x + Next[i][0], ny = y + Next[i][1], p_tmp = p_rest + Cost[i];
if (nx >= 0 && nx < n && ny >= 0 && ny < m && mp[nx][ny] == 1 && p_tmp >= 0)
{
dfs(nx, ny, p_tmp);
}
}
now.pop_back();
mp[x][y] = 1;
}
int main()
{
cin >> n >> m >> p;
for (int i = 0; i<n*m; ++i)
cin >> mp[i / m][i%m];
dfs(0, 0, p);
if (ans.size())
{
int flag = 0;
for (int i = 0; i<ans.size(); ++i)
{
if (flag)
cout << ',';
flag = 1;
cout << '[' << ans[i].x << ',' << ans[i].y << ']';
}
}
else
cout << "Can not escape!";
system("pause");
return 0;
}
//BFS,得到到达地图上每个点最多可剩余多少体力,但是无法保存路径
#include<iostream>
#include<queue>
using namespace std;
int n, m, p;
int mp[11][11] = { 0 };
int Next[4][2] = { 1,0, -1,0, 0,1, 0,-1 };
struct label
{
int x;
int y;
label(){}
label(int _x,int _y):x(_x),y(_y){}
};
int main()
{
int ans;
cin >> n >> m >> p;
for (int i = 0; i < n*m; ++i)
{
cin >> mp[i/m][i%m];
}
mp[0][0] = 2;
queue<label> q;
q.push(label(0,0));
while (q.size())
{
label tmp = q.front();
q.pop();
for (int i = 0; i < 4; ++i)
{
int nx = tmp.x + Next[i][0];
int ny = tmp.y + Next[i][1];
if (nx < 0 || nx >= n || ny < 0 || ny >= m || mp[nx][ny] != 1)
continue;
if (i == 0)
{
mp[nx][ny] = mp[tmp.x][tmp.y];
q.push(label(nx, ny));
}
else if (i == 1)
{
mp[nx][ny] = mp[tmp.x][tmp.y]+3;
q.push(label(nx, ny));
}
else
{
mp[nx][ny] = mp[tmp.x][tmp.y]+1;
q.push(label(nx, ny));
}
}
}
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < m; ++j)
{
cout << mp[i][j] << " ";
}
cout << endl;
}
system("pause");
return 0;
}