题目:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
题解:动态规划。
C++版:
class Solution {
public:
int uniquePaths(int m, int n) {
if(!m || !n)
return 0;
if(m == 1 || n == 1)
return 1;
vector<vector<int>> ways;
for(int i = 0; i < m; i++) {
vector<int> way(n);
ways.push_back(way);
}
for(int j = 0; j < n; j++)
ways[0][j] = 1;
for(int k = 0; k < m; k++)
ways[k][0] = 1;
for(int x = 1; x < m; x++)
for(int y = 1; y < n; y++)
ways[x][y] = ways[x][y-1] + ways[x-1][y];
return ways[m-1][n-1];
}
};
Java版:
public class Solution {
public int uniquePaths(int m, int n) {
if(m == 0 || n == 0)
return 0;
if(m == 1 || n == 1)
return 1;
int paths[][] = new int[m][n];
for(int i = 0; i < n; i++)
paths[0][i] = 1;
for(int j = 0; j < m; j++)
paths[j][0] = 1;
for(int x = 1; x < m; x++)
for(int y = 1; y < n; y++)
paths[x][y] = paths[x-1][y] + paths[x][y-1];
return paths[m-1][n-1];
}
}
Python版:
class Solution:
# @return an integer
def uniquePaths(self, m, n):
if m == 0 or n == 0:
return 0
if m == 1 or n == 1:
return 1
paths = []
paths.append([1] * n)
for i in range(1, m):
temp = [0] * (n-1)
temp.insert(0, 1)
paths.append(temp)
for j in range(1, m):
for k in range(1, n):
paths[j][k] = paths[j-1][k] + paths[j][k-1]
return paths[m-1][n-1]